DOI QR코드

DOI QR Code

An Engineering View on Megatrends in Radiology: Digitization to Quantitative Tools of Medicine

  • Kim, Namkug (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Choi, Jaesoon (Medical Engineering R&D Center, Asan Medical Center) ;
  • Yi, Jaeyoun (R&D Dept., Coreline Soft, Co. Ltd.) ;
  • Choi, Seungwook (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Park, Seyoun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Chang, Yongjun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Seo, Joon Beom (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center)
  • Published : 2013.04.01

Abstract

Within six months of the discovery of X-ray in 1895, the technology was used to scan the interior of the human body, paving the way for many innovations in the field of medicine, including an ultrasound device in 1950, a CT scanner in 1972, and MRI in 1980. More recent decades have witnessed developments such as digital imaging using a picture archiving and communication system, computer-aided detection/diagnosis, organ-specific workstations, and molecular, functional, and quantitative imaging. One of the latest technical breakthrough in the field of radiology has been imaging genomics and robotic interventions for biopsy and theragnosis. This review provides an engineering perspective on these developments and several other megatrends in radiology.

Keywords

References

  1. Bell, ME,Science and art in Roentgenography, Xray Tech, 20, 1, 146-148(1948)
  2. Beckmann, EC,CT scanning the early days, Br J Radiol, 79, 2, 5-8(2006) https://doi.org/10.1259/bjr/29444122
  3. DICOM. http://medical.nema.org/Dicom/
  4. IHE. http://ihe.net
  5. HL7. http://www.hl7.org
  6. Chen, J, Bradshaw, J, Nagy, P,Has the Picture Archiving and Communication System (PACS) become a commodity?, J Digit Imaging, 24, 6, 6-10(2011) https://doi.org/10.1007/s10278-010-9299-0
  7. Bandon, D, Lovis, C, Geissbühler, A, Vallee, JP,Enterprise-wide PACS: beyond radiology, an architecture to manage all medical images, Acad Radiol, 12, 7, 1000-1009(2005) https://doi.org/10.1016/j.acra.2005.03.075
  8. Law, MY, Liu, B, Chan, LW,Informatics in radiology: DICOM-RT-based electronic patient record information system for radiation therapy, Radiographics, 29, 8, 961-972(2009) https://doi.org/10.1148/rg.294085073
  9. Law, MY, Liu, B,Informatics in radiology: DICOM-RT and its utilization in radiation therapy, Radiographics, 29, 9, 655-667(2009) https://doi.org/10.1148/rg.293075172
  10. Zhou, Z, Liu, BJ, Le, AH,CAD-PACS integration tool kit based on DICOM secondary capture, structured report and IHE workflow profiles, Comput Med Imaging Graph, 31, 10, 346-352(2007) https://doi.org/10.1016/j.compmedimag.2007.02.015
  11. Samei, E, Seibert, JA, Andriole, K, Badano, A, Crawford, J, Reiner, B,AAPM/RSNA tutorial on equipment selection: PACS equipment overview: general guidelines for purchasing and acceptance testing of PACS equipment, Radiographics, 24, 11, 313-334(2004) https://doi.org/10.1148/rg.241035137
  12. Meyers, PH, Nice, CM, Becker, HC, Nettleton, WJ, Sweeney, JW, Meckstroth, GR,Automated computer analysis of radiographic images, Radiology, 83, 12, 1029-1034(1964) https://doi.org/10.1148/83.6.1029
  13. Kruger, RP, Townes, JR, Hall, DL, Dwyer, SJ, Lodwick, GS,Automated radiographic diagnosis via feature extraction and classification of cardiac size and shape descriptors, IEEE Trans Biomed Eng, 19, 13, 174-186(1972)
  14. Doi, K,Computer-aided diagnosis in medical imaging: historical review, current status and future potential, Comput Med Imaging Graph, 31, 14, 198-211(2007) https://doi.org/10.1016/j.compmedimag.2007.02.002
  15. Loo, LN, Doi, K, Metz, CE,Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns, Med Phys, 12, 15, 209-214(1985) https://doi.org/10.1118/1.595775
  16. Giger, ML, Doi, K,Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on SNR and threshold contrast, Med Phys, 12, 16, 201-208(1985) https://doi.org/10.1118/1.595708
  17. Giger, ML, Doi, K,Investigation of basic imaging properties in digital radiography. I. Modulation transfer function, Med Phys, 11, 17, 287-295(1984) https://doi.org/10.1118/1.595629
  18. Freer, TW, Ulissey, MJ,Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center, Radiology, 220, 18, 781-786(2001) https://doi.org/10.1148/radiol.2203001282
  19. Birdwell, RL, Bandodkar, P, Ikeda, DM,Computer-aided detection with screening mammography in a university hospital setting, Radiology, 236, 19, 451-457(2005) https://doi.org/10.1148/radiol.2362040864
  20. Cupples, TE, Cunningham, JE, Reynolds, JC,Impact of computer-aided detection in a regional screening mammography program, AJR Am J Roentgenol, 185, 20, 944-950(2005) https://doi.org/10.2214/AJR.04.1300
  21. Morton, MJ, Whaley, DH, Brandt, KR, Amrami, KK,Screening mammograms: interpretation with computer-aided detection--prospective evaluation, Radiology, 239, 21, 375-383(2006) https://doi.org/10.1148/radiol.2392042121
  22. Butler, SA, Gabbay, RJ, Kass, DA, Siedler, DE, O'shaughnessy, KF, Castellino, RA,Computer-aided detection in diagnostic mammography: detection of clinically unsuspected cancers, AJR Am J Roentgenol, 183, 22, 1511-1515(2004) https://doi.org/10.2214/ajr.183.5.1831511
  23. Warren Burhenne, LJ, Wood, SA, D'Orsi, CJ, Feig, SA, Kopans, DB, O'Shaughnessy, KF,Potential contribution of computer-aided detection to the sensitivity of screening mammography, Radiology, 215, 23, 554-562(2000) https://doi.org/10.1148/radiology.215.2.r00ma15554
  24. Ozekes, S, Osman, O, Camurcu, AY,Mammographic mass detection using a mass template, Korean J Radiol, 6, 24, 221-228(2005) https://doi.org/10.3348/kjr.2005.6.4.221
  25. Li, F, Arimura, H, Suzuki, K, Shiraishi, J, Li, Q, Abe, H,Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization, Radiology, 237, 25, 684-690(2005) https://doi.org/10.1148/radiol.2372041555
  26. Giger, ML, Doi, K, MacMahon, H,Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields, Med Phys, 15, 26, 158-166(1988) https://doi.org/10.1118/1.596247
  27. Song, KD, Chung, MJ, Kim, HC, Jeong, SY, Lee, KS,Usefulness of the CAD system for detecting pulmonary nodule in real clinical practice, Korean J Radiol, 12, 27, 163-168(2011) https://doi.org/10.3348/kjr.2011.12.2.163
  28. Goo, JM,A computer-aided diagnosis for evaluating lung nodules on chest CT: the current status and perspective, Korean J Radiol, 12, 28, 145-155(2011) https://doi.org/10.3348/kjr.2011.12.2.145
  29. Ozekes, S, Osman, O, Ucan, ON,Nodule detection in a lung region that's segmented with using genetic cellular neural networks and 3D template matching with fuzzy rule based thresholding, Korean J Radiol, 9, 29, 1-9(2008) https://doi.org/10.3348/kjr.2008.9.1.1
  30. Kasai, S, Li, F, Shiraishi, J, Li, Q, Doi, K,Computerized detection of vertebral compression fractures on lateral chest radiographs: preliminary results with a tool for early detection of osteoporosis, Med Phys, 33, 30, 4664-4674(2006) https://doi.org/10.1118/1.2364053
  31. Liberman, UA, Weiss, SR, Bröll, J, Minne, HW, Quan, H, Bell, NH,Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis, N Engl J Med, 333, 31, 1437-1443(1995) https://doi.org/10.1056/NEJM199511303332201
  32. Hirai, T, Korogi, Y, Arimura, H, Katsuragawa, S, Kitajima, M, Yamura, M,Intracranial aneurysms at MR angiography: effect of computer-aided diagnosis on radiologists' detection performance, Radiology, 237, 32, 605-610(2005) https://doi.org/10.1148/radiol.2372041734
  33. Wardlaw, JM, White, PM,The detection and management of unruptured intracranial aneurysms, Brain, 123, 33, 205-221(2000) https://doi.org/10.1093/brain/123.2.205
  34. Shiraishi, J, Li, Q, Appelbaum, D, Pu, Y, Doi, K,Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans, Med Phys, 34, 34, 25-36(2007)
  35. Bogoni, L, Ko, JP, Alpert, J, Anand, V, Fantauzzi, J, Florin, CH,Impact of a computer-aided detection (CAD) system integrated into a picture archiving and communication system (PACS) on reader sensitivity and efficiency for the detection of lung nodules in thoracic CT exams, J Digit Imaging, 25, 35, 771-781(2012) https://doi.org/10.1007/s10278-012-9496-0
  36. Welter, P, Hocken, C, Deserno, TM, Grouls, C, Günther, RW,Workflow management of content-based image retrieval for CAD support in PACS environments based on IHE, Int J Comput Assist Radiol Surg, 5, 36, 393-400(2010) https://doi.org/10.1007/s11548-010-0416-9
  37. Le, AH, Liu, B, Huang, HK,Integration of computer-aided diagnosis/detection (CAD) results in a PACS environment using CAD-PACS toolkit and DICOM SR, Int J Comput Assist Radiol Surg, 4, 37, 317-329(2009) https://doi.org/10.1007/s11548-009-0297-y
  38. Zhou, Z,Data security assurance in CAD-PACS integration, Comput Med Imaging Graph, 31, 38, 353-360(2007) https://doi.org/10.1016/j.compmedimag.2007.02.013
  39. Cho, HC, Hadjiiski, L, Sahiner, B, Chan, HP, Helvie, M, Paramagul, C,Similarity evaluation in a content-based image retrieval (CBIR) CADx system for characterization of breast masses on ultrasound images, Med Phys, 38, 39, 1820-1831(2011) https://doi.org/10.1118/1.3560877
  40. Baldi, A, Murace, R, Dragonetti, E, Manganaro, M, Guerra, O, Bizzi, S,Definition of an automated Content-Based Image Retrieval (CBIR) system for the comparison of dermoscopic images of pigmented skin lesions, Biomed Eng Online, 8, 40, 18(2009) https://doi.org/10.1186/1475-925X-8-18
  41. Xue, Z, Antani, S, Long, LR, Jeronimo, J, Thoma, GR,Investigating CBIR techniques for cervicographic images, AMIA Annu Symp Proc, , 41, 826-830(2007)
  42. Kherfi, ML, Ziou, D,Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples, IEEE Trans Image Process, 15, 42, 1017-1030(2006) https://doi.org/10.1109/TIP.2005.863969
  43. Fischl, B, Sereno, MI, Dale, AM,Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system, Neuroimage, 9, 43, 195-207(1999) https://doi.org/10.1006/nimg.1998.0396
  44. Dale, AM, Fischl, B, Sereno, MI,Cortical surface-based analysis. I. Segmentation and surface reconstruction, Neuroimage, 9, 44, 179-194(1999) https://doi.org/10.1006/nimg.1998.0395
  45. Using the Brain Imaging Lab (BIL). Birmingham University Imaging Centre. http://www.buic.bham.ac.uk/pbic/bilusage. html. Accessed November 18, 2011
  46. Wang, Y, Gupta, A, Liu, Z, Zhang, H, Escolar, ML, Gilmore, JH,DTI registration in atlas based fiber analysis of infantile Krabbe disease, Neuroimage, 55, 46, 1577-1586(2011) https://doi.org/10.1016/j.neuroimage.2011.01.038
  47. Lee, CW, Seo, JB, Lee, Y, Chae, EJ, Kim, N, Lee, HJ,A pilot trial on pulmonary emphysema quantification and perfusion mapping in a single-step using contrast-enhanced dual-energy computed tomography, Invest Radiol, 47, 47, 92-97(2012) https://doi.org/10.1097/RLI.0b013e318228359a
  48. Park, SO, Seo, JB, Kim, N, Lee, YK, Lee, J, Kim, DS,Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system, Korean J Radiol, 12, 48, 297-307(2011) https://doi.org/10.3348/kjr.2011.12.3.297
  49. Lim, J, Kim, N, Seo, JB, Lee, YK, Lee, Y, Kang, SH,Regional context-sensitive support vector machine classifier to improve automated identification of regional patterns of diffuse interstitial lung disease, J Digit Imaging, 24, 49, 1133-1140(2011) https://doi.org/10.1007/s10278-011-9367-0
  50. Lee, HJ, Seo, JB, Chae, EJ, Kim, N, Lee, CW, Oh, YM,Tracheal morphology and collapse in COPD: correlation with CT indices and pulmonary function test, Eur J Radiol, 80, 50, e531-e535(2011) https://doi.org/10.1016/j.ejrad.2010.12.062
  51. Chae, EJ, Kim, TB, Cho, YS, Park, CS, Seo, JB, Kim, N,Airway Measurement for Airway Remodeling Defined by Post-Bronchodilator FEV1/FVC in Asthma: Investigation Using Inspiration-Expiration Computed Tomography, Allergy Asthma Immunol Res, 3, 51, 111-117(2011) https://doi.org/10.4168/aair.2011.3.2.111
  52. Chae, EJ, Seo, JB, Song, JW, Kim, N, Park, BW, Lee, YK,Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function, AJR Am J Roentgenol, 194, 52, W248-W255(2010) https://doi.org/10.2214/AJR.09.2672
  53. Park, SO, Seo, JB, Kim, N, Park, SH, Lee, YK, Park, BW,Feasibility of automated quantification of regional disease patterns depicted on high-resolution computed tomography in patients with various diffuse lung diseases, Korean J Radiol, 10, 53, 455-463(2009) https://doi.org/10.3348/kjr.2009.10.5.455
  54. Kim, N, Seo, JB, Song, KS, Chae, EJ, Kang, SH,Semi-automatic measurement of the airway dimension by computed tomography using the full-with-half-maximum method: a study of the measurement accuracy according to the orientation of an artificial airway, Korean J Radiol, 9, 54, 236-242(2008) https://doi.org/10.3348/kjr.2008.9.3.236
  55. Kim, N, Seo, JB, Song, KS, Chae, EJ, Kang, SH,Semi-automatic measurement of the airway dimension by computed tomography using the full-width-half-maximum method: a study on the measurement accuracy according to the CT parameters and size of the airway, Korean J Radiol, 9, 55, 226-235(2008) https://doi.org/10.3348/kjr.2008.9.3.226
  56. Ogawa, S, Lee, TM, Kay, AR, Tank, DW,Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc Natl Acad Sci U S A, 87, 56, 9868-9872(1990) https://doi.org/10.1073/pnas.87.24.9868
  57. Whalley, HC, Papmeyer, M, Sprooten, E, Lawrie, SM, Sussmann, JE, McIntosh, AM,Review of functional magnetic resonance imaging studies comparing bipolar disorder and schizophrenia, Bipolar Disord, 14, 57, 411-431(2012) https://doi.org/10.1111/j.1399-5618.2012.01016.x
  58. Astrakas, LG, Naqvi, SH, Kateb, B, Tzika, AA,Functional MRI using robotic MRI compatible devices for monitoring rehabilitation from chronic stroke in the molecular medicine era (Review), Int J Mol Med, 29, 58, 963-973(2012)
  59. Paloyelis, Y, Mehta, MA, Kuntsi, J, Asherson, P,Functional MRI in ADHD: a systematic literature review, Expert Rev Neurother, 7, 59, 1337-1356(2007) https://doi.org/10.1586/14737175.7.10.1337
  60. Crosson, B, McGregor, K, Gopinath, KS, Conway, TW, Benjamin, M, Chang, YL,Functional MRI of language in aphasia: a review of the literature and the methodological challenges, Neuropsychol Rev, 17, 60, 157-177(2007) https://doi.org/10.1007/s11065-007-9024-z
  61. Powell, HW, Koepp, MJ, Richardson, MP, Symms, MR, Thompson, PJ, Duncan, JS,The application of functional MRI of memory in temporal lobe epilepsy: a clinical review, Epilepsia, 45, 61, 855-863(2004) https://doi.org/10.1111/j.0013-9580.2004.41603.x
  62. Histed, SN, Lindenberg, ML, Mena, E, Turkbey, B, Choyke, PL, Kurdziel, KA,Review of functional/anatomical imaging in oncology, Nucl Med Commun, 33, 62, 349-361(2012) https://doi.org/10.1097/MNM.0b013e32834ec8a5
  63. Del Vecchio, S, Zannetti, A, Fonti, R, Iommelli, F, Pizzuti, LM, Lettieri, A,PET/CT in cancer research: from preclinical to clinical applications, Contrast Media Mol Imaging, 5, 63, 190-200(2010) https://doi.org/10.1002/cmmi.368
  64. Cai, W, Chen, X,Multimodality molecular imaging of tumor angiogenesis, J Nucl Med, 49, 64, 113S-128S(2008) https://doi.org/10.2967/jnumed.107.045922
  65. Buckler, AJ, Bresolin, L, Dunnick, NR, Sullivan, DC,A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging, Radiology, 258, 65, 906-914(2011) https://doi.org/10.1148/radiol.10100799
  66. Buckler, AJ, Mulshine, JL, Gottlieb, R, Zhao, B, Mozley, PD, Schwartz, L,The use of volumetric CT as an imaging biomarker in lung cancer, Acad Radiol, 17, 66, 100-106(2010) https://doi.org/10.1016/j.acra.2009.07.030
  67. Buckler, AJ, Mozley, PD, Schwartz, L, Petrick, N, McNitt-Gray, M, Fenimore, C,Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker, Acad Radiol, 17, 67, 107-115(2010) https://doi.org/10.1016/j.acra.2009.06.019
  68. Frank, R,Quantitative Imaging Biomarkers Alliance FDG-PET/CT Working Group report, Mol Imaging Biol, 10, 68, 305(2008) https://doi.org/10.1007/s11307-008-0167-y
  69. Smith, JJ, Sorensen, AG, Thrall, JH,Biomarkers in imaging: realizing radiology's future, Radiology, 227, 69, 633-638(2003) https://doi.org/10.1148/radiol.2273020518
  70. Clarke, LP, Sriram, RD, Schilling, LB,Imaging as a Biomarker: Standards for Change Measurements in Therapy workshop summary, Acad Radiol, 15, 70, 501-530(2008) https://doi.org/10.1016/j.acra.2007.10.021
  71. McLennan, G, Clarke, L, Hohl, RJ,Imaging as a biomarker for therapy response: cancer as a prototype for the creation of research resources, Clin Pharmacol Ther, 84, 71, 433-436(2008) https://doi.org/10.1038/clpt.2008.171
  72. Armato, SG, Meyer, CR, Mcnitt-Gray, MF, McLennan, G, Reeves, AP, Croft, BY,The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software, Clin Pharmacol Ther, 84, 72, 448-456(2008) https://doi.org/10.1038/clpt.2008.161
  73. Petrick, N, Brown, DG, Suleiman, O, Myers, KJ,Imaging as a tumor biomarker in oncology drug trials for lung cancer: the FDA perspective, Clin Pharmacol Ther, 84, 73, 523-525(2008) https://doi.org/10.1038/clpt.2008.155
  74. Gavrielides, MA, Kinnard, LM, Myers, KJ, Petrick, N,Noncalcified lung nodules: volumetric assessment with thoracic CT, Radiology, 251, 74, 26-37(2009) https://doi.org/10.1148/radiol.2511071897
  75. Quantitative Imaging Biomarkers Alliance. http://www.rsna. org/QIBA_.aspx. 2009
  76. Goo, HW, Yang, DH, Kim, N, Park, SI, Kim, DK, Kim, EA,Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience, Korean J Radiol, 12, 76, 25-33(2011) https://doi.org/10.3348/kjr.2011.12.1.25
  77. Chae, EJ, Seo, JB, Lee, J, Kim, N, Goo, HW, Lee, HJ,Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience, Invest Radiol, 45, 77, 354-361(2010)
  78. NVIDIA 3D Vision. http://www.nvidia.com/object/3d-visionmain. html
  79. Okoshi T. Three Dimensional Imaging Techniques. New York: Academic Press, 1976
  80. Sandin, D, Margolis, T, Dawe, G, Leigh, J, DeFanti, T,The Varrier Autostereographic Display, Proc SPIE, 4297, 80, 204-211(2001)
  81. What's New. Holographics North. http://www.holonorth. com/new.htm
  82. Soares, OD, Fernandes, JC,Cylindrical hologram of 360 degrees field of view, Appl Opt, 21, 82, 3194-3196(1982) https://doi.org/10.1364/AO.21.003194
  83. Kutter O, Aichert A, Bichlmeier C, Traub J, Heining SM, Ockert B, et al. Real-time volume rendering for high quality visualization in augmented reality. New York: International Workshop on Augmented environments for Medical Imaging including Augmented Reality in Computer-aided Surgery (AMI-ARCS 2008), 2008
  84. Werkgartner, G, Lemmerer, M, Hauser, H, Sorantin, E, Beichel, R, Reitinger, B,Augmented-reality-based liver-surgical planning system, Eur Surg, 36, 84, 270-274(2004) https://doi.org/10.1007/s10353-004-0102-7
  85. Teistler M. Explore in 3D: a new virtual image navigation tool. SPIE Newsroom 2006;1
  86. Hariri, AR, Weinberger, DR,Imaging genomics, Br Med Bull, 65, 86, 259-270(2003) https://doi.org/10.1093/bmb/65.1.259
  87. Glahn, DC, Paus, T, Thompson, PM,Imaging genomics: mapping the influence of genetics on brain structure and function, Hum Brain Mapp, 28, 87, 461-463(2007) https://doi.org/10.1002/hbm.20416
  88. Thompson, PM, Martin, NG, Wright, MJ,Imaging genomics, Curr Opin Neurol, 23, 88, 368-373(2010)
  89. Hua, X, Leow, AD, Parikshak, N, Lee, S, Chiang, MC, Toga, AW,Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects, Neuroimage, 43, 89, 458-469(2008) https://doi.org/10.1016/j.neuroimage.2008.07.013
  90. Pievani, M, Rasser, PE, Galluzzi, S, Benussi, L, Ghidoni, R, Sabattoli, F,Mapping the effect of APOE epsilon4 on gray matter loss in Alzheimer's disease in vivo, Neuroimage, 45, 90, 1090-1098(2009) https://doi.org/10.1016/j.neuroimage.2009.01.009
  91. Schuff, N, Woerner, N, Boreta, L, Kornfield, T, Shaw, LM, Trojanowski, JQ,MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers, Brain, 132, 91, 1067-1077(2009)
  92. Filippini, N, Zarei, M, Beckmann, CF, Galluzzi, S, Borsci, G, Testa, C,Regional atrophy of transcallosal prefrontal connections in cognitively normal APOE epsilon4 carriers, J Magn Reson Imaging, 29, 92, 1021-1026(2009) https://doi.org/10.1002/jmri.21757
  93. Shaw, P, Lerch, JP, Pruessner, JC, Taylor, KN, Rose, AB, Greenstein, D,Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study, Lancet Neurol, 6, 93, 494-500(2007) https://doi.org/10.1016/S1474-4422(07)70106-0
  94. van Nuenen, BF, van Eimeren, T, van der Vegt, JP, Buhmann, C, Klein, C, Bloem, BR,Mapping preclinical compensation in Parkinson's disease: an imaging genomics approach, Mov Disord, 24, 94, S703-S710(2009) https://doi.org/10.1002/mds.22635
  95. Guccione, S, Yang, YS, Shi, G, Lee, DY, Li, KC, Bednarski, MD,Functional genomics guided with MR imaging: mouse tumor model study, Radiology, 228, 95, 560-568(2003) https://doi.org/10.1148/radiol.2282020907
  96. Borgwardt, SJ, Fusar-Poli, P,Imaging Genomics - An integrative approach to understand the biological susceptibility for schizophrenia, Med Hypotheses, 68, 96, 1426(2007) https://doi.org/10.1016/j.mehy.2006.11.002
  97. Kent, WJ, Sugnet, CW, Furey, TS, Roskin, KM, Pringle, TH, Zahler, AM,The human genome browser at UCSC, Genome Res, 12, 97, 996-1006(2002) https://doi.org/10.1101/gr.229102
  98. Goecks, J, Nekrutenko, A, Taylor, J,Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol, 11, 98, R86(2010) https://doi.org/10.1186/gb-2010-11-8-r86
  99. Nicholas, BL, O'Connor, CD, Djukanovic, R,From proteomics to prescription-the search for COPD biomarkers, COPD, 6, 99, 298-303(2009) https://doi.org/10.1080/15412550903049140
  100. Fava, C, Montagnana, M, Guidi, GC, Melander, O,From circulating biomarkers to genomics and imaging in the prediction of cardiovascular events in the general population, Ann Med, 44, 100, 433-447(2012) https://doi.org/10.3109/07853890.2011.582511
  101. Chen, SS, Wang, YP,Translational systems genomics: ontology and imaging, Summit on Translat Bioinforma, 2009, 101, 21-25(2009)
  102. Capek K, Novack C. R.U.R. (Rossum's Universal Robots). New York: Penguin Books, 2004
  103. Hockstein, N, Gourin, C, Faust, R, Terris, D,A history of robots: from science fiction to surgical robotics, J Robot Surg, 1, 103, 113-118(2007) https://doi.org/10.1007/s11701-007-0021-2
  104. Bargar WL, Bauer A, Borner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 1998:82-91
  105. Gourin, CG, Terris, DJ,Surgical robotics in otolaryngology: expanding the technology envelope, Curr Opin Otolaryngol Head Neck Surg, 12, 105, 204-208(2004) https://doi.org/10.1097/01.moo.0000122309.13359.af
  106. Ballantyne, GH,Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinical results, Surg Endosc, 16, 106, 1389-1402(2002) https://doi.org/10.1007/s00464-001-8283-7
  107. Himpens, J, Leman, G, Cadiere, GB,Telesurgical laparoscopic cholecystectomy, Surg Endosc, 12, 107, 1091(1998) https://doi.org/10.1007/s004649900788
  108. Rockall TA. The da Vinci telerobotic surgical system. In: Ballantyne GH, Marescaux J, Giulianotti PC, eds. Primer of robotic & telerobotic surgery. Philadelphia: Lippincott Williams & Wilkins, 2004:57-60
  109. Neubach, Z, Shoham, M,Ultrasound-guided robot for flexible needle steering, IEEE Trans Biomed Eng, 57, 109, 799-805(2010) https://doi.org/10.1109/TBME.2009.2030169
  110. Chun, KR, Schmidt, B, Kokturk, B, Tilz, R, Furnkranz, A, Konstantinidou, M,Catheter ablation - new developments in robotics, Herz, 33, 110, 586-589(2008) https://doi.org/10.1007/s00059-008-3180-7
  111. Ernst, S,Robotic approach to catheter ablation, Curr Opin Cardiol, 23, 111, 28-31(2008) https://doi.org/10.1097/HCO.0b013e3282f2c95c
  112. Marcelli, E, Cercenelli, L, Plicchi, G,A novel telerobotic system to remotely navigate standard electrophysiology catheters, Comput Cardiol, 14-17, 112, 137-140(2008)
  113. Reddy, VY, Neuzil, P, Malchano, ZJ, Vijaykumar, R, Cury, R, Abbara, S,View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility, Circulation, 115, 113, 2705-2714(2007) https://doi.org/10.1161/CIRCULATIONAHA.106.677369

Cited by

  1. Software-assisted morphometry and volumetry of the lumbar spine vol.50, pp.3, 2013, https://doi.org/10.1016/j.pjnns.2016.01.010