DOI QR코드

DOI QR Code

In Vitro and In Vivo Imaging of Prostate Cancer Angiogenesis Using Anti-Vascular Endothelial Growth Factor Receptor 2 Antibody-Conjugated Quantum Dot

  • Kwon, Haejin (Medicinal Chemistry Laboratory, Institute Pasteur Korea (IP-K)) ;
  • Lee, Jiyeon (Medicinal Chemistry Laboratory, Institute Pasteur Korea (IP-K)) ;
  • Song, Rita (Medicinal Chemistry Laboratory, Institute Pasteur Korea (IP-K)) ;
  • Hwang, Sung Il (Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Institute of Radiation Medicine, Seoul National University Medical Research Center, Clinical Research Institute) ;
  • Lee, Junghan (Medicinal Chemistry Laboratory, Institute Pasteur Korea (IP-K)) ;
  • Kim, Young-Hwa (Department of Nuclear Medicine and Biomedical Sciences Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Lee, Hak Jong (Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Institute of Radiation Medicine, Seoul National University Medical Research Center, Clinical Research Institute)
  • Published : 2013.02.01

Abstract

Objective: Authors aimed to determine the targeting ability of vascular endothelial growth factor receptor 2 (VEGFR2)- conjugated quantum dots (QDs) in vitro, and apply it for a xenograft prostate cancer mouse model. Materials and Methods: Conjugation reaction of QDs was performed by using the N-(3-dimethylaminopropyl)-N'- ethylcarbodiimide (EDC) and sulfo-(N-hydroxysulfosuccinimide) (Sulfo-NHS). The human umbilical vein cord endothelial cells (HUVECs) were incubated with QDs, conjugated with antiVGFR2, to see a specific binding in vitro. Fluorescent cell images were taken by a confocal microscope. The human prostate cancer cells (PC3) were injected to five nude mice on hind limbs to make the xenograft tumor model. QD-antiVEGFR2 antibody complex was injected into the tumor model and fluorescence measurements were performed at 1, 4, 9, 12, 15, and 24 hours after the injection. Results: The specific interaction between HUVECs and QD-antiVEGFR2 antibody was clearly shown in vitro. The in vivo fluorescence image disclosed that there was an increased signal of tumor, 12 hours after the injection of QDs. Conclusion: By showing endothelial cells binding with QDs-antiVEGFR2 antibodyand an experimental application of the antibody for VEGFR2 imaging in the prostate cancer xenograft mouse model, we suggests that the antibody-conjugated QDs can be a potential imaging tool for angiogenesis of the cancer.

Keywords

References

  1. Folkman, J,Tumor angiogenesis: therapeutic implications, N Engl J Med, 285, 1, 1182-1186(1971) https://doi.org/10.1056/NEJM197111182852108
  2. Oostendorp, M, Douma, K, Hackeng, TM, Dirksen, A, Post, MJ, van Zandvoort, MA,Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots, Cancer Res, 68, 2, 7676-7683(2008) https://doi.org/10.1158/0008-5472.CAN-08-0689
  3. Carmeliet, P,Angiogenesis in health and disease, Nat Med, 9, 3, 653-660(2003) https://doi.org/10.1038/nm0603-653
  4. Meitar, D, Crawford, SE, Rademaker, AW, Cohn, SL,Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma, J Clin Oncol, 14, 4, 405-414(1996) https://doi.org/10.1200/JCO.1996.14.2.405
  5. Daldrup, H, Shames, DM, Wendland, M, Okuhata, Y, Link, TM, Rosenau, W,Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media, AJR Am J Roentgenol, 171, 5, 941-949(1998) https://doi.org/10.2214/ajr.171.4.9762973
  6. Massoud, TF, Gambhir, SS,Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes Dev, 17, 6, 545-580(2003) https://doi.org/10.1101/gad.1047403
  7. Mulder, WJ, Castermans, K, van Beijnum, JR, Oude Egbrink, MG, Chin, PT, Fayad, ZA,Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots, Angiogenesis, 12, 7, 17-24(2009) https://doi.org/10.1007/s10456-008-9124-2
  8. Zhang, H, Yee, D, Wang, C,Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives, Nanomedicine (Lond), 3, 8, 83-91(2008) https://doi.org/10.2217/17435889.3.1.83
  9. Willmann, JK, Paulmurugan, R, Chen, K, Gheysens, O, Rodriguez-Porcel, M, Lutz, AM,US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice, Radiology, 246, 9, 508-518(2008) https://doi.org/10.1148/radiol.2462070536
  10. Yang, YA, Wu, H, Williams, KR, Cao, YC,Synthesis of CdSe and CdTe nanocrystals without precursor injection, Angew Chem Int Ed Engl, 44, 10, 6712-6715(2005) https://doi.org/10.1002/anie.200502279
  11. Lee, J, Choi, Y, Kim, K, Hong, S, Park, HY, Lee, T,Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots, Bioconjug Chem, 21, 11, 940-946(2010) https://doi.org/10.1021/bc9004975
  12. Schellenberger, EA, Bogdanov, A, Petrovsky, A, Ntziachristos, V, Weissleder, R, Josephson, L,Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy, Neoplasia, 5, 12, 187-192(2003) https://doi.org/10.1016/S1476-5586(03)80050-7
  13. Deshpande, N, Pysz, MA, Willmann, JK,Molecular ultrasound assessment of tumor angiogenesis, Angiogenesis, 13, 13, 175-188(2010) https://doi.org/10.1007/s10456-010-9175-z
  14. Hicklin, DJ, Ellis, LM,Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis, J Clin Oncol, 23, 14, 1011-1027(2005) https://doi.org/10.1200/JCO.2005.06.081
  15. Smith, AM, Duan, H, Mohs, AM, Nie, S,Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv Drug Deliv Rev, 60, 15, 1226-1240(2008) https://doi.org/10.1016/j.addr.2008.03.015
  16. Kim, S, Lim, YT, Soltesz, EG, De Grand, AM, Lee, J, Nakayama, A,Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nat Biotechnol, 22, 16, 93-97(2004) https://doi.org/10.1038/nbt920
  17. Bentolila, LA, Ebenstein, Y, Weiss, S,Quantum dots for in vivo small-animal imaging, J Nucl Med, 50, 17, 493-496(2009) https://doi.org/10.2967/jnumed.108.053561
  18. Chen, K, Li, ZB, Wang, H, Cai, W, Chen, X,Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots, Eur J Nucl Med Mol Imaging, 35, 18, 2235-2244(2008) https://doi.org/10.1007/s00259-008-0860-8
  19. Zhang, H, Zeng, X, Li, Q, Gaillard-Kelly, M, Wagner, CR, Yee, D,Fluorescent tumour imaging of type I IGF receptor in vivo: comparison of antibody-conjugated quantum dots and small-molecule fluorophore, Br J Cancer, 101, 19, 71-79(2009) https://doi.org/10.1038/sj.bjc.6605103
  20. Chen, LD, Liu, J, Yu, XF, He, M, Pei, XF, Tang, ZY,The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis, Biomaterials, 29, 20, 4170-4176(2008) https://doi.org/10.1016/j.biomaterials.2008.07.025
  21. Weidner, N, Carroll, PR, Flax, J, Blumenfeld, W, Folkman, J,Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma, Am J Pathol, 143, 21, 401-409(1993)
  22. Schlemmer, HP, Merkle, J, Grobholz, R, Jaeger, T, Michel, MS, Werner, A,Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?, Eur Radiol, 14, 22, 309-317(2004) https://doi.org/10.1007/s00330-003-2025-2
  23. Gao, X, Cui, Y, Levenson, RM, Chung, LW, Nie, S,In vivo cancer targeting and imaging with semiconductor quantum dots, Nat Biotechnol, 22, 23, 969-976(2004) https://doi.org/10.1038/nbt994
  24. Cai, W, Chen, K, Li, ZB, Gambhir, SS, Chen, X,Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature, J Nucl Med, 48, 24, 1862-1870(2007) https://doi.org/10.2967/jnumed.107.043216
  25. Cai, W, Shin, DW, Chen, K, Gheysens, O, Cao, Q, Wang, SX,Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects, Nano Lett, 6, 25, 669-676(2006) https://doi.org/10.1021/nl052405t
  26. Hardman, R,A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ Health Perspect, 114, 26, 165-172(2006) https://doi.org/10.1289/ehp.8284
  27. Ipe, BI, Lehnig, M, Niemeyer, CM,On the generation of free radical species from quantum dots, Small, 1, 27, 706-709(2005) https://doi.org/10.1002/smll.200500105
  28. Lovric, J, Cho, SJ, Winnik, FM, Maysinger, D,Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem Biol, 12, 28, 1227-1234(2005) https://doi.org/10.1016/j.chembiol.2005.09.008
  29. Jun, HY, Yin, HH, Kim, SH, Park, SH, Kim, HS, Yoon, KH,Visualization of tumor angiogenesis using MR imaging contrast agent Gd-DTPA-anti-VEGF receptor 2 antibody conjugate in a mouse tumor model, Korean J Radiol, 11, 29, 449-456(2010) https://doi.org/10.3348/kjr.2010.11.4.449
  30. Ko, EY, Lee, SH, Kim, HH, Kim, SM, Shin, MJ, Kim, N,Evaluation of tumor angiogenesis with a second-generation US contrast medium in a rat breast tumor model, Korean J Radiol, 9, 30, 243-249(2008) https://doi.org/10.3348/kjr.2008.9.3.243
  31. Kim, JW, Jeong, YY, Chang, NK, Heo, SH, Shin, SS, Lee, JH,Perfusion CT in colorectal cancer: comparison of perfusion parameters with tumor grade and microvessel density, Korean J Radiol, 13, 31, S89-S97(2012) https://doi.org/10.3348/kjr.2012.13.S1.S89

Cited by

  1. A NOVEL ANTI-ESTROGEN RECEPTOR TARGETED WATER-SOLUBLE QDs FOR BREAST CANCER CELL IMMUNOFLUORESCENT LABELING vol.9, pp.7, 2013, https://doi.org/10.1142/s1793292014500738
  2. Effective cellular internalization of silica-coated CdSe quantum dots for high contrast cancer imaging and labelling applications vol.5, pp.1, 2013, https://doi.org/10.1186/s12645-014-0001-y
  3. Convergence of Nanotechnology and Cancer Prevention: Are We There Yet? vol.7, pp.10, 2014, https://doi.org/10.1158/1940-6207.capr-14-0079
  4. Recent progress in quantum dot based sensors vol.5, pp.34, 2013, https://doi.org/10.1039/c5ra01950h
  5. Advances in Nanoparticle Imaging Technology for Vascular Pathologies vol.66, pp.None, 2013, https://doi.org/10.1146/annurev-med-042513-125551
  6. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors vol.44, pp.14, 2013, https://doi.org/10.1039/c4cs00532e
  7. Smad7 Enhances TGF-β-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells vol.23, pp.9, 2013, https://doi.org/10.1016/j.isci.2020.101470