References
- Kim EJ, Kim N, Cho SG. The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exp Mol Med 2013;45:e2. https://doi.org/10.1038/emm.2013.2
- Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147. https://doi.org/10.1126/science.284.5411.143
- Izadpanah R, Trygg C, Patel B, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006;99:1285-1297. https://doi.org/10.1002/jcb.20904
- Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211-228. https://doi.org/10.1089/107632701300062859
- Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004;32:657-664. https://doi.org/10.1016/j.exphem.2004.04.001
- Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007;16:931-952. https://doi.org/10.1089/scd.2007.0036
- Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004;22:625-634. https://doi.org/10.1634/stemcells.22-4-625
- Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235-242. https://doi.org/10.1046/j.1365-2141.2000.01986.x
- Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317. https://doi.org/10.1080/14653240600855905
- Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49. https://doi.org/10.1038/nature00870
- Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2001;19:408-418. https://doi.org/10.1634/stemcells.19-5-408
- Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-1170. https://doi.org/10.1126/science.284.5417.1168
- Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002;109:1291-1302. https://doi.org/10.1172/JCI0215182
- Tropel P, Platet N, Platel JC, et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24:2868-2876. https://doi.org/10.1634/stemcells.2005-0636
- Cogle CR, Yachnis AT, Laywell ED, et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 2004;363:1432-1437. https://doi.org/10.1016/S0140-6736(04)16102-3
- Rose RA, Keating A, Backx PH. Do mesenchymal stromal cells transdifferentiate into functional cardiomyocytes? Circ Res 2008;103:e120. https://doi.org/10.1161/CIRCRESAHA.108.186908
- Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 2008;103:167-176. https://doi.org/10.1161/CIRCRESAHA.108.176131
- Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 1995;92:4857-4861. https://doi.org/10.1073/pnas.92.11.4857
- Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-98. https://doi.org/10.1161/hc0102.101442
- Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005;112:214-223. https://doi.org/10.1161/CIRCULATIONAHA.104.527937
- Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 2004;29:1971-1979. https://doi.org/10.1097/01.brs.0000138273.02820.0a
- Bae JS, Han HS, Youn DH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 2007;25:1307-1316. https://doi.org/10.1634/stemcells.2006-0561
- Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004;117(Pt 23):5655-5664. https://doi.org/10.1242/jcs.01488
-
English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of
$CD_{4+}CD_{25}$ (High) forkhead box$P_{3+}$ regulatory T cells. Clin Exp Immunol 2009;156:149-160. https://doi.org/10.1111/j.1365-2249.2009.03874.x - Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005;105:2821-2827. https://doi.org/10.1182/blood-2004-09-3696
- Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838-3843. https://doi.org/10.1182/blood.V99.10.3838
- Augello A, Tasso R, Negrini SM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005;35:1482-1490. https://doi.org/10.1002/eji.200425405
- Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006;107:367-372. https://doi.org/10.1182/blood-2005-07-2657
- Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008;111:1327-1333.
- Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte- derived dendritic cells. Blood 2005;105:4120-4126. https://doi.org/10.1182/blood-2004-02-0586
- Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815-1822. https://doi.org/10.1182/blood-2004-04-1559
-
Maccario R, Podesta M, Moretta A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of
$CD_{4+}$ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005;90:516-525. - Groh ME, Maitra B, Szekely E, Koc ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005;33:928-934. https://doi.org/10.1016/j.exphem.2005.05.002
- Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005;105:2214-2219. https://doi.org/10.1182/blood-2004-07-2921
- Zhang W, Ge W, Li C, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004;13:263-271. https://doi.org/10.1089/154732804323099190
- Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007;83:71-76. https://doi.org/10.1097/01.tp.0000244572.24780.54
-
Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both
$CD_{34+}$ -derived and monocyte-derived dendritic cells. J Immunol 2006;177:2080-2087. https://doi.org/10.4049/jimmunol.177.4.2080 - Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006;107:2570-2577. https://doi.org/10.1182/blood-2005-07-2793
- Keating A. How do mesenchymal stromal cells suppress T cells? Cell Stem Cell 2008;2:106-108. https://doi.org/10.1016/j.stem.2008.01.007
- Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008;2:141-150. https://doi.org/10.1016/j.stem.2007.11.014
- Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103:4619-4621. https://doi.org/10.1182/blood-2003-11-3909
-
Ye Z, Wang Y, Xie HY, Zheng SS. Immunosuppressive effects of rat mesenchymal stem cells: involvement of
$CD_{4+}CD_{25+}$ regulatory T cells. Hepatobiliary Pancreat Dis Int 2008;7:608-614. - Di Ianni M, Del Papa B, De Ioanni M, et al. Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 2008;36:309-318. https://doi.org/10.1016/j.exphem.2007.11.007
- Joo SY, Cho KA, Jung YJ, et al. Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy 2010;12:361-370. https://doi.org/10.3109/14653240903502712
- Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005;106:1755-1761. https://doi.org/10.1182/blood-2005-04-1496
- Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 2009;60:1006-1019. https://doi.org/10.1002/art.24405
- Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 2010;184:5885-5894. https://doi.org/10.4049/jimmunol.0903143
- Nemeth K, Keane-Myers A, Brown JM, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A 2010;107:5652-5657. https://doi.org/10.1073/pnas.0910720107
- Madec AM, Mallone R, Afonso G, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 2009;52:1391-1399. https://doi.org/10.1007/s00125-009-1374-z
- Choi YS, Jeong JA, Lim DS. Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. Immunol Invest 2012;41:214-229. https://doi.org/10.3109/08820139.2011.619022
- Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 2011;33:593-602. https://doi.org/10.1007/s00281-011-0267-7
- Dazzi F, Marelli-Berg FM. Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 2008;38:1479-1482. https://doi.org/10.1002/eji.200838433
- Krampera M, Cosmi L, Angeli R, et al. Role for interferon- gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006;24:386-398. https://doi.org/10.1634/stemcells.2005-0008
- Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65:3307-3318. https://doi.org/10.1158/0008-5472.CAN-04-1874
- Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006;24:1254-1264. https://doi.org/10.1634/stemcells.2005-0271
- Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 2006;24:23-33. https://doi.org/10.1634/stemcells.2004-0176
- Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007;177:489-500. https://doi.org/10.1083/jcb.200608093
- Fiedler J, Roderer G, Gunther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 2002;87:305-312. https://doi.org/10.1002/jcb.10309
- Dwyer RM, Potter-Beirne SM, Harrington KA, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007;13:5020-5027. https://doi.org/10.1158/1078-0432.CCR-07-0731
- Palumbo R, Galvez BG, Pusterla T, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol 2007;179:33-40. https://doi.org/10.1083/jcb.200704015
- Palumbo R, Bianchi ME. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 2004;68:1165-1170. https://doi.org/10.1016/j.bcp.2004.03.048
- Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 2007;18:2873-2882. https://doi.org/10.1091/mbc.E07-02-0166
- Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-550. https://doi.org/10.1038/nrc1388
- Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA. Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res 2007;67:186-193. https://doi.org/10.1158/0008-5472.CAN-06-3292
- Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309-313. https://doi.org/10.1038/6529
- Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227-1231. https://doi.org/10.1182/blood.V97.5.1227
- Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002;99:8932-8937. https://doi.org/10.1073/pnas.132252399
- Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005;79:1607-1614. https://doi.org/10.1097/01.TP.0000159029.48678.93
- Cahill RA, Wenkert D, Perlman SA, et al. Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 2007;92:2923-2930. https://doi.org/10.1210/jc.2006-2131
- Whyte MP, Kurtzberg J, McAlister WH, et al. Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 2003;18:624-636. https://doi.org/10.1359/jbmr.2003.18.4.624
- Rombouts WJ, Ploemacher RE. Primary murine MSC show highly eff icient homing to the bone marrow but lose homing ability following culture. Leukemia 2003;17:160-170. https://doi.org/10.1038/sj.leu.2402763
- Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 2000;28:707-715. https://doi.org/10.1016/S0301-472X(00)00160-0
- Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 2004;13:595-600. https://doi.org/10.3727/000000004783983747
- Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 2007;1:74-79. https://doi.org/10.1002/term.8
- Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002;10:199-206. https://doi.org/10.1053/joca.2001.0504
- Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007;15:226-231. https://doi.org/10.1016/j.joca.2006.08.008
- Tabbara IA, Zimmerman K, Morgan C, Nahleh Z. Allogeneic hematopoietic stem cell transplantation: complications and results. Arch Intern Med 2002;162:1558- 1566. https://doi.org/10.1001/archinte.162.14.1558
- Baron F, Lechanteur C, Willems E, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010;16:838-847. https://doi.org/10.1016/j.bbmt.2010.01.011
- Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005;11:389-398. https://doi.org/10.1016/j.bbmt.2005.02.001
- Ning H, Yang F, Jiang M, et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 2008;22:593-599. https://doi.org/10.1038/sj.leu.2405090
- Ball LM, Bernardo ME, Roelofs H, et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 2007;110:2764-2767. https://doi.org/10.1182/blood-2007-04-087056
- Bernardo ME, Ball LM, Cometa AM, et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant 2011;46:200-207. https://doi.org/10.1038/bmt.2010.87
- Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant 2009;43:447-454. https://doi.org/10.1038/bmt.2008.348
- Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439-1441. https://doi.org/10.1016/S0140-6736(04)16104-7
- Fang B, Song YP, Liao LM, Han Q, Zhao RC. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant 2006;38:389-390. https://doi.org/10.1038/sj.bmt.1705457
- Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008;371:1579-1586. https://doi.org/10.1016/S0140-6736(08)60690-X
- Lucchini G, Introna M, Dander E, et al. Platelet-lysate- expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biol Blood Marrow Transplant 2010;16:1293-1301. https://doi.org/10.1016/j.bbmt.2010.03.017
- Muller I, Kordowich S, Holzwarth C, et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 2008;40:25-32. https://doi.org/10.1016/j.bcmd.2007.06.021
- Prasad VK, Lucas KG, Kleiner GI, et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 2011;17:534-541. https://doi.org/10.1016/j.bbmt.2010.04.014
- Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graftversus-host disease. Transplantation 2006;81:1390-1397. https://doi.org/10.1097/01.tp.0000214462.63943.14
- von Bonin M, Stolzel F, Goedecke A, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 2009;43:245-251. https://doi.org/10.1038/bmt.2008.316
- Wu KH, Chan CK, Tsai C, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 2011;91:1412-1416. https://doi.org/10.1097/TP.0b013e31821aba18
- Zhou H, Guo M, Bian C, et al. Efficacy of bone marrow- derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 2010;16:403-412. https://doi.org/10.1016/j.bbmt.2009.11.006
- Kebriaei P, Isola L, Bahceci E, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009;15:804-811. https://doi.org/10.1016/j.bbmt.2008.03.012
- Weng JY, Du X, Geng SX, et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant 2010;45:1732-1740. https://doi.org/10.1038/bmt.2010.195
- Kuzmina LA, Petinati NA, Parovichnikova EN, et al. Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease: a phase II study. Stem Cells Int 2012;2012:968213.
- Zhang S, Ge J, Sun A, et al. Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source. J Cell Biochem 2006;99:1132-1147. https://doi.org/10.1002/jcb.20949
- Jiang S, Haider H, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 2006;99:776-784. https://doi.org/10.1161/01.RES.0000244687.97719.4f
- Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112:1128-1135. https://doi.org/10.1161/CIRCULATIONAHA.104.500447
- Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92-95. https://doi.org/10.1016/j.amjcard.2004.03.034
- Chen S, Liu Z, Tian N, et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 2006;18:552-556.
- Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005;65:321-329. https://doi.org/10.1002/ccd.20406
- Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace 2007;9:167-171. https://doi.org/10.1093/europace/eul184
- Yang Z, Zhang F, Ma W, et al. A novel approach to transplanting bone marrow stem cells to repair human myocardial infarction: delivery via a noninfarct-relative artery. Cardiovasc Ther 2010;28:380-385. https://doi.org/10.1111/j.1755-5922.2009.00116.x
- Zeinaloo A, Zanjani KS, Bagheri MM, Mohyeddin-Bonab M, Monajemzadeh M, Arjmandnia MH. Intracoronary administration of autologous mesenchymal stem cells in a critically ill patient with dilated cardiomyopathy. Pediatr Transplant 2011;15:E183-E186. https://doi.org/10.1111/j.1399-3046.2010.01366.x
- Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-2286. https://doi.org/10.1016/j.jacc.2009.06.055
- Ichim TE, Solano F, Brenes R, et al. Placental mesenchymal and cord blood stem cell therapy for dilated cardiomyopathy. Reprod Biomed Online 2008;16:898-905. https://doi.org/10.1016/S1472-6483(10)60159-9
- Tyndall A. Application of autologous stem cell transplantation in various adult and pediatric rheumatic diseases. Pediatr Res 2012;71(4 Pt 2):433-438. https://doi.org/10.1038/pr.2011.66
- Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 2005;48:1416-1423. https://doi.org/10.1007/s10350-005-0052-6
- Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 2009;52:79-86. https://doi.org/10.1007/DCR.0b013e3181973487
- Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007;4:50-57.
- Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010;227:185-189. https://doi.org/10.1016/j.jneuroim.2010.07.013
- Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010;67:1187-1194.
- Riordan NH, Ichim TE, Min WP, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009;7:29. https://doi.org/10.1186/1479-5876-7-29
- Sun LY, Zhang HY, Feng XB, Hou YY, Lu LW, Fan LM. Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 2007;16:121-128. https://doi.org/10.1177/0961203306075793
- Liang J, Zhang H, Hua B, et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 2010;69:1423-1429. https://doi.org/10.1136/ard.2009.123463
- Sun L, Wang D, Liang J, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010;62:2467-2475. https://doi.org/10.1002/art.27548
- Liang J, Gu F, Wang H, et al. Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol 2010;6:486-489. https://doi.org/10.1038/nrrheum.2010.80
- Carrion F, Nova E, Ruiz C, et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 2010;19:317-322. https://doi.org/10.1177/0961203309348983
- Mao F, Xu WR, Qian H, et al. Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res 2010;59:219-225.
- Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford) 2008;47:22-30. https://doi.org/10.1093/rheumatology/kem284
- Chen B, Hu J, Liao L, et al. Flk-1+ mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 2010;159:292-302. https://doi.org/10.1111/j.1365-2249.2009.04069.x
- Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther 2010;12:R31. https://doi.org/10.1186/ar2939
- Park MJ, Park HS, Cho ML, et al. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 2011;63:1668-1680. https://doi.org/10.1002/art.30326
- Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med 2007;10:459-466.
- Kharaziha P, Hellstrom PM, Noorinayer B, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 2009;21:1199-1205. https://doi.org/10.1097/MEG.0b013e32832a1f6c
- Wang H, Cao F, De A, et al. Traff icking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009;27:1548-1558. https://doi.org/10.1002/stem.81
- Qiao L, Xu Z, Zhao T, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008;18:500-507. https://doi.org/10.1038/cr.2008.40
- Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006;203:1235-1247. https://doi.org/10.1084/jem.20051921
- Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009;113:4197-4205. https://doi.org/10.1182/blood-2008-09-176198
- Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-3844. https://doi.org/10.1182/blood-2003-04-1193
- Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449:557-563. https://doi.org/10.1038/nature06188
- Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006;80:267-274. https://doi.org/10.1016/j.yexmp.2005.07.004
- Gao P, Ding Q, Wu Z, Jiang H, Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 2010;290:157-166. https://doi.org/10.1016/j.canlet.2009.08.031
- Seo SH, Kim KS, Park SH, et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 2011;18:488-495. https://doi.org/10.1038/gt.2010.170
- Stagg J, Lejeune L, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004;15:597-608. https://doi.org/10.1089/104303404323142042
- Gunnarsson S, Bexell D, Svensson A, Siesjo P, Darabi A, Bengzon J. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010;218:140-144. https://doi.org/10.1016/j.jneuroim.2009.10.017
-
Xin H, Kanehira M, Mizuguchi H, et al. Targeted delivery of
$CX_3CL_1$ to multiple lung tumors by mesenchymal stem cells. Stem Cells 2007;25:1618-1626. https://doi.org/10.1634/stemcells.2006-0461 - Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62:3603-3608.
- Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008;26:2332-2338. https://doi.org/10.1634/stemcells.2008-0084
- Ren C, Kumar S, Chanda D, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 2008;15:1446-1453. https://doi.org/10.1038/gt.2008.101
- Miletic H, Fischer Y, Litwak S, et al. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007;15:1373-1381. https://doi.org/10.1038/sj.mt.6300155
- Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010;18:223-231. https://doi.org/10.1038/mt.2009.237
- Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006;5:755-766. https://doi.org/10.1158/1535-7163.MCT-05-0334
- Stoff-Khalili MA, Rivera AA, Mathis JM, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007;105:157-167. https://doi.org/10.1007/s10549-006-9449-8
- Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008;26:831-841. https://doi.org/10.1634/stemcells.2007-0758
- Yong RL, Shinojima N, Fueyo J, et al. Human bone marrow- derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 2009;69:8932-8940. https://doi.org/10.1158/0008-5472.CAN-08-3873
- van Eekelen M, Sasportas LS, Kasmieh R, et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 2010;29:3185-3195. https://doi.org/10.1038/onc.2010.75
- Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009;69:4134-4142.
- Mueller LP, Luetzkendorf J, Widder M, Nerger K, Caysa H, Mueller T. TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther 2011;18:229-239. https://doi.org/10.1038/cgt.2010.68
- Kanehira M, Xin H, Hoshino K, et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007;14:894-903. https://doi.org/10.1038/sj.cgt.7701079
- Tolar J, Nauta AJ, Osborn MJ, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007;25:371-379. https://doi.org/10.1634/stemcells.2005-0620
- Wang Y, Huso DL, Harrington J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005;7:509-519. https://doi.org/10.1080/14653240500363216
- Ramos CA, Asgari Z, Liu E, et al. An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells 2010;28:1107-1115. https://doi.org/10.1002/stem.433
Cited by
- Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/430290
- A gene therapy induced emphysema model and the protective role of stem cells vol.9, pp.1, 2014, https://doi.org/10.1186/s13000-014-0195-7
- Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice vol.1, pp.3, 2014, https://doi.org/10.7603/s40730-014-0016-3
- “Ins” and “Outs” of mesenchymal stem cell osteogenesis in regenerative medicine vol.6, pp.2, 2013, https://doi.org/10.4252/wjsc.v6.i2.94
- Substance P modulates properties of bone marrow-derived mesenchymal stem cells vol.11, pp.3, 2013, https://doi.org/10.1007/s13770-014-0012-0
- Sodium Butyrate Promotes the Differentiation of Rat Bone Marrow Mesenchymal Stem Cells to Smooth Muscle Cells through Histone Acetylation vol.9, pp.12, 2013, https://doi.org/10.1371/journal.pone.0116183
- Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord vol.160, pp.1, 2015, https://doi.org/10.1007/s10517-015-3116-1
- IL-21-Expressing Mesenchymal Stem Cells Prevent Lethal B-Cell Lymphoma Through Efficient Delivery of IL-21, Which Redirects the Immune System to Target the Tumor vol.24, pp.23, 2013, https://doi.org/10.1089/scd.2015.0103
- Therapeutic Effects of Mesenchymal Stem Cells for Patients with Chronic Liver Diseases: Systematic Review and Meta-analysis vol.30, pp.10, 2013, https://doi.org/10.3346/jkms.2015.30.10.1405
- Optimization of Pre-transplantation Conditions to Enhance the Efficacy of Mesenchymal Stem Cells vol.11, pp.3, 2013, https://doi.org/10.7150/ijbs.10567
- Negative impact of bone-marrow-derived mesenchymal stem cells on dextran sulfate sodium-induced colitis vol.21, pp.7, 2013, https://doi.org/10.3748/wjg.v21.i7.2030
- Long‐term three‐dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors vol.112, pp.4, 2013, https://doi.org/10.1002/bit.25485
- Substance P enhances the proliferation and migration potential of murine bone marrow-derived mesenchymal stem cell-like cell lines vol.9, pp.4, 2015, https://doi.org/10.3892/etm.2015.2291
- New Strategies for Overcoming Limitations of Mesenchymal Stem Cell-Based Immune Modulation vol.8, pp.1, 2015, https://doi.org/10.15283/ijsc.2015.8.1.54
- Immunomodulatory effects of umbilical cord‐derived mesenchymal stem cells vol.59, pp.6, 2015, https://doi.org/10.1111/1348-0421.12259
- Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine vol.10, pp.18, 2013, https://doi.org/10.2217/nnm.15.113
- Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model vol.10, pp.9, 2013, https://doi.org/10.1371/journal.pone.0138846
- Tumoricidal Property of Normoxia and Hypoxia Cell-Free Lysate of Wharton’s Jelly-Mesenchymal Stem Cells Toward Various Cancer Cells vol.11, pp.4, 2013, https://doi.org/10.3923/ijcr.2015.186.196
- Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion vol.2, pp.12, 2013, https://doi.org/10.7603/s40730-015-0029-6
- Regulating Stem Cell Secretome Using Injectable Hydrogels with In Situ Network Formation vol.5, pp.21, 2016, https://doi.org/10.1002/adhm.201600497
- Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells vol.12, pp.5, 2013, https://doi.org/10.1007/s12015-016-9671-7
- Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications vol.103, pp.2, 2016, https://doi.org/10.1007/s12185-015-1918-6
- The effect of a sol-gel derived silica coating doped with vitamin E on oxidative stress and senescence of human adipose-derived mesenchymal stem cells (AMSCs) vol.6, pp.35, 2016, https://doi.org/10.1039/c6ra00029k
- Bone Marrow Mesenchymal Stromal Cells from Clinical Scale Culture: In Vitro Evaluation of Their Differentiation, Hematopoietic Support, and Immunosuppressive Capacities vol.25, pp.17, 2013, https://doi.org/10.1089/scd.2016.0071
- Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy vol.20, pp.12, 2016, https://doi.org/10.1111/jcmm.12932
- Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/1905846
- The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/1908365
- Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α 4-Integrin Expression vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/2562718
- Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/5646384
- Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/6532860
- Cysteine Dioxygenase Type 1 Inhibits Osteogenesis by Regulating Wnt Signaling in Primary Mouse Bone Marrow Stromal Cells vol.6, pp.None, 2013, https://doi.org/10.1038/srep19296
- Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis vol.6, pp.None, 2013, https://doi.org/10.1038/srep26851
- Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties vol.49, pp.2, 2013, https://doi.org/10.3109/08916934.2015.1113267
- Nanoghosts as a Novel Natural Nonviral Gene Delivery Platform Safely Targeting Multiple Cancers vol.16, pp.3, 2013, https://doi.org/10.1021/acs.nanolett.5b04237
- Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis vol.11, pp.4, 2013, https://doi.org/10.3892/etm.2016.3083
- Selective Cytotoxic Potential of IFN-γ and TNF-α on Breast Cancer Cell Lines (T47D and MCF7) vol.11, pp.1, 2013, https://doi.org/10.3923/ajcb.2016.1.12
- Clinical‐grade quality platelet‐rich plasma releasate (PRP‐R/SRGF) from CaCl2‐activated platelet concentrates promoted expansion of mesenchymal stromal cells vol.111, pp.2, 2013, https://doi.org/10.1111/vox.12405
- The potential of mesenchymal stromal cells in immunotherapy vol.8, pp.8, 2013, https://doi.org/10.2217/imt-2016-0037
- Mesenchymal stem cells promote macrophage polarization toward M2b-like cells vol.348, pp.1, 2013, https://doi.org/10.1016/j.yexcr.2016.08.022
- The effects of the DNA methyltranfserases inhibitor 5‐Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells vol.21, pp.2, 2017, https://doi.org/10.1111/jcmm.12972
- Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Str vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/3027109
- Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer vol.8, pp.None, 2013, https://doi.org/10.3389/fimmu.2017.01770
- The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.302
- Mesenchymal Stem Cell-based Therapy as a New Horizon for Kidney Injuries vol.48, pp.2, 2013, https://doi.org/10.1016/j.arcmed.2017.03.007
- Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer vol.18, pp.2, 2013, https://doi.org/10.3390/ijms18020345
- Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis vol.118, pp.4, 2013, https://doi.org/10.1002/jcb.25757
- Villous Chorion: A Potential Source for Pluripotent-like Stromal Cells vol.8, pp.2, 2017, https://doi.org/10.4103/0976-9668.210011
- Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy vol.9, pp.28, 2013, https://doi.org/10.1021/acsami.7b05766
- Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas vol.114, pp.30, 2017, https://doi.org/10.1073/pnas.1700363114
- Baculovirus-induced recombinant protein expression in human mesenchymal stromal stem cells: A promoter study vol.39, pp.2, 2013, https://doi.org/10.1016/j.nbt.2017.08.006
- MicroRNA expression in bone marrow-derived human multipotent Stromal cells vol.18, pp.None, 2017, https://doi.org/10.1186/s12864-017-3997-7
- Harvesting multipotent progenitor cells from a small sample of tonsillar biopsy for clinical applications vol.8, pp.1, 2013, https://doi.org/10.1186/s13287-017-0619-x
- Therapeutic potential of mesenchymal stromal cells for hypoxic ischemic encephalopathy: A systematic review and meta-analysis of preclinical studies vol.12, pp.12, 2017, https://doi.org/10.1371/journal.pone.0189895
- hASC and DFAT, Multipotent Stem Cells for Regenerative Medicine: A Comparison of Their Potential Differentiation In Vitro vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122699
- The use of stem cells in aesthetic dermatology and plastic surgery procedures. A compact review of experimental and clinical applications vol.34, pp.6, 2013, https://doi.org/10.5114/ada.2017.72456
- Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF vol.70, pp.2, 2013, https://doi.org/10.1007/s10616-017-0131-2
- Three-Dimensional Spheroid Culture Increases Exosome Secretion from Mesenchymal Stem Cells vol.15, pp.4, 2013, https://doi.org/10.1007/s13770-018-0139-5
- Mini Review: Application of Human Mesenchymal Stem Cells in Gene and Stem Cells Therapy Era vol.4, pp.4, 2013, https://doi.org/10.1007/s40778-018-0147-3
- Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair vol.4, pp.4, 2013, https://doi.org/10.1021/acsbiomaterials.7b00005
- Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/4083921
- Mesenchymal Stem Cell Therapy for Ischemic Tissues vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/8179075
- Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/9415367
- Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning vol.9, pp.None, 2013, https://doi.org/10.3389/fimmu.2018.02837
- Anticancer cellular immunotherapies derived from umbilical cord blood vol.18, pp.2, 2013, https://doi.org/10.1080/14712598.2018.1402002
- Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation vol.12, pp.3, 2018, https://doi.org/10.1002/term.2565
- Could mesenchymal stem cell therapy help in the treatment of muscle damage caused by Bothrops alternatus venom? vol.48, pp.3, 2013, https://doi.org/10.1590/0103-8478cr20170760
- The Effect of Hexanoyl Glycol Chitosan on the Proliferation of Human Mesenchymal Stem Cells vol.10, pp.8, 2013, https://doi.org/10.3390/polym10080839
- Mobilization of human mesenchymal stem cells through different cytokines and growth factors after their immobilization by sulfur mustard vol.293, pp.None, 2013, https://doi.org/10.1016/j.toxlet.2018.02.011
- Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells vol.115, pp.36, 2013, https://doi.org/10.1073/pnas.1802568115
- Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells vol.11, pp.1, 2013, https://doi.org/10.1186/s13045-018-0554-z
- Safety and Efficacy of Intraventricular Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in Hemorrhagic Stroke Model vol.9, pp.None, 2013, https://doi.org/10.1038/s41598-019-42182-1
- Mesenchymal stem cells as adjuvant therapy for limb lengthening in achondroplasia vol.28, pp.3, 2013, https://doi.org/10.1097/bpb.0000000000000571
- Labeling Stem Cells with a New Hybrid Bismuth/Carbon Nanotube Contrast Agent for X-Ray Imaging vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/2183051
- Mesenchymal Stem Cells Exhibit Both a Proinflammatory and Anti-Inflammatory Effect on Saccular Aneurysm Formation in a Rabbit Model vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/3618217
- Matrix Rigidity‐Dependent Regulation of Ca 2+ at Plasma Membrane Microdomains by FAK Visualized by Fluorescence Resonance Energy Transfer vol.6, pp.4, 2013, https://doi.org/10.1002/advs.201801290
- Stem cell therapy for knee osteoarthritis: a narrative review of a rapidly evolving treatment with implications for physical therapy management vol.24, pp.1, 2013, https://doi.org/10.1080/10833196.2019.1585674
- Soluble matrix protein is a potent modulator of mesenchymal stem cell performance vol.116, pp.6, 2019, https://doi.org/10.1073/pnas.1812951116
- Therapeutic Use of Intrathecal Mesenchymal Stem Cells in patients with Multiple Sclerosis: A Pilot Study with Booster Injection vol.48, pp.2, 2019, https://doi.org/10.1080/08820139.2018.1504301
- Mesenchymal Stem Cells-Potential Applications in Kidney Diseases vol.20, pp.10, 2013, https://doi.org/10.3390/ijms20102462
- Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability vol.854, pp.None, 2013, https://doi.org/10.1016/j.ejphar.2019.02.043
- Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox vol.11, pp.8, 2013, https://doi.org/10.3390/cancers11081087
- Orchestrating stem cell fate: Novel tools for regenerative medicine vol.11, pp.8, 2013, https://doi.org/10.4252/wjsc.v11.i8.464
- Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients vol.74, pp.9, 2013, https://doi.org/10.1093/gerona/gly227
- Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies vol.56, pp.10, 2019, https://doi.org/10.1007/s12035-019-1570-x
- Changes in the Circulatory and Lymphatic Systems of Internal Genitals in Female Rats after Intravenous and Lymphotropic Administration of Multipotent Mesenchymal Stem Cells and Products Secreted by Th vol.168, pp.1, 2013, https://doi.org/10.1007/s10517-019-04669-9
- Impact of humanised isolation and culture conditions on stemness and osteogenic potential of bone marrow derived mesenchymal stromal cells vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-52442-9
- Mesenchymal Stem Cells for Coronavirus (COVID-19)-Induced Pneumonia: Revisiting the Paracrine Hypothesis with New Hopes? vol.11, pp.3, 2013, https://doi.org/10.14336/ad.2020.0403
- p19Arf sensitizes B16 melanoma cells to interferon-β delivered via mesenchymal stem cells in vitro vol.53, pp.3, 2013, https://doi.org/10.1590/1414-431x20198876
- Safety of Technique and Procedure of Stromal Vascular Fraction Therapy: From Liposuction to Cell Administration vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/2863624
- Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/8837654
- Syndecan-1 Facilitates the Human Mesenchymal Stem Cell Osteo-Adipogenic Balance vol.21, pp.11, 2013, https://doi.org/10.3390/ijms21113884
- Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy vol.77, pp.14, 2020, https://doi.org/10.1007/s00018-020-03454-6
- Human mesenchymal stem cells inhibit the differentiation and effector functions of monocytes vol.26, pp.5, 2013, https://doi.org/10.1177/1753425919899132
- Inflammatory Mediators in Glioma Microenvironment Play a Dual Role in Gliomagenesis and Mesenchymal Stem Cell Homing: Implication for Cellular Therapy vol.4, pp.4, 2013, https://doi.org/10.1016/j.mayocpiqo.2020.04.006
- The Therapeutic Potential of Extracellular Vesicles Versus Mesenchymal Stem Cells in Liver Damage vol.17, pp.4, 2013, https://doi.org/10.1007/s13770-020-00267-3
- A comparative study on immunophenotypic characterization and osteogenic differentiation of human mesenchymal stromal cells derived from periodontal ligament and gingiva vol.91, pp.9, 2013, https://doi.org/10.1002/jper.19-0535
- ZBP1 (DAI/DLM-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling vol.8, pp.1, 2020, https://doi.org/10.1038/s41413-020-0085-4
- Role of cancer stem cells in the development of giant cell tumor of bone vol.20, pp.None, 2013, https://doi.org/10.1186/s12935-020-01218-7
- Mapping current research and identifying hotspots on mesenchymal stem cells in cardiovascular disease vol.11, pp.1, 2013, https://doi.org/10.1186/s13287-020-02009-7
- 3D printable Sodium alginate-Matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation vol.35, pp.6, 2013, https://doi.org/10.1177/0885328220961261
- Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5513309
- Safety of Intraovarian Injection of Human Mesenchymal Stem Cells in a Premature Ovarian Insufficiency Mouse Model vol.30, pp.None, 2013, https://doi.org/10.1177/0963689720988502
- Banking of AT-MSC and its Influence on Their Application to Clinical Procedures vol.9, pp.None, 2013, https://doi.org/10.3389/fbioe.2021.773123
- Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord vol.265, pp.None, 2021, https://doi.org/10.1016/j.lfs.2020.118755
- Hydrogels for Large-Scale Expansion of Stem Cells vol.128, pp.None, 2013, https://doi.org/10.1016/j.actbio.2021.03.026
- Controlled aggregation enhances immunomodulatory potential of mesenchymal stromal cell aggregates vol.10, pp.8, 2021, https://doi.org/10.1002/sctm.19-0414
- Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery vol.12, pp.8, 2013, https://doi.org/10.3390/mi12080897
- MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line vol.279, pp.None, 2013, https://doi.org/10.1016/j.lfs.2021.119643
- Engineering cartilage graft using mesenchymal stem cell laden polyacrylamide-galactoxyloglucan hydrogel for transplantation vol.36, pp.3, 2013, https://doi.org/10.1177/08853282211019521
- Transcriptional profiling of circulating mononuclear cells from patients with chronic obstructive pulmonary disease receiving mesenchymal stromal cell infusions vol.10, pp.11, 2013, https://doi.org/10.1002/sctm.21-0024
- Uncharted waters: mesenchymal stem cell treatment for pediatric refractory rheumatic diseases; a single center case series vol.19, pp.1, 2013, https://doi.org/10.1186/s12969-021-00575-5
- Glucose and Serum Deprivation Led to Altered Proliferation, Differentiation Potential and AMPK Activation in Stem Cells from Human Deciduous Tooth vol.12, pp.1, 2013, https://doi.org/10.3390/jpm12010018
- Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease vol.14, pp.1, 2022, https://doi.org/10.3390/pharmaceutics14010011