DOI QR코드

DOI QR Code

Clinical applications of mesenchymal stem cells

  • Kim, Nayoun (Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease) ;
  • Cho, Seok-Goo (Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease)
  • Published : 2013.07.01

Abstract

Mesenchymal stem cells (MSCs) are self-renewing, multipotent progenitor cells with multilineage potential to differentiate into cell types of mesodermal origin, such as adipocytes, osteocytes, and chondrocytes. In addition, MSCs can migrate to sites of inflammation and exert potent immunosuppressive and anti-inflammatory effects through interactions between lymphocytes associated with both the innate and adaptive immune system. Along with these unique therapeutic properties, their ease of accessibility and expansion suggest that use of MSCs may be a useful therapeutic approach for various disorders. In the clinical setting, MSCs are being explored in trials of various conditions, including orthopedic injuries, graft versus host disease following bone marrow transplantation, cardiovascular diseases, autoimmune diseases, and liver diseases. Furthermore, genetic modification of MSCs to overexpress antitumor genes has provided prospects for clinical use as anticancer therapy. Here, we highlight the currently reported uses of MSCs in clinical trials and discuss their efficacy as well as their limitations.

Keywords

References

  1. Kim EJ, Kim N, Cho SG. The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exp Mol Med 2013;45:e2. https://doi.org/10.1038/emm.2013.2
  2. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147. https://doi.org/10.1126/science.284.5411.143
  3. Izadpanah R, Trygg C, Patel B, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006;99:1285-1297. https://doi.org/10.1002/jcb.20904
  4. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211-228. https://doi.org/10.1089/107632701300062859
  5. Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004;32:657-664. https://doi.org/10.1016/j.exphem.2004.04.001
  6. Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007;16:931-952. https://doi.org/10.1089/scd.2007.0036
  7. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004;22:625-634. https://doi.org/10.1634/stemcells.22-4-625
  8. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235-242. https://doi.org/10.1046/j.1365-2141.2000.01986.x
  9. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317. https://doi.org/10.1080/14653240600855905
  10. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49. https://doi.org/10.1038/nature00870
  11. Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 2001;19:408-418. https://doi.org/10.1634/stemcells.19-5-408
  12. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-1170. https://doi.org/10.1126/science.284.5417.1168
  13. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002;109:1291-1302. https://doi.org/10.1172/JCI0215182
  14. Tropel P, Platet N, Platel JC, et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24:2868-2876. https://doi.org/10.1634/stemcells.2005-0636
  15. Cogle CR, Yachnis AT, Laywell ED, et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 2004;363:1432-1437. https://doi.org/10.1016/S0140-6736(04)16102-3
  16. Rose RA, Keating A, Backx PH. Do mesenchymal stromal cells transdifferentiate into functional cardiomyocytes? Circ Res 2008;103:e120. https://doi.org/10.1161/CIRCRESAHA.108.186908
  17. Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 2008;103:167-176. https://doi.org/10.1161/CIRCRESAHA.108.176131
  18. Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 1995;92:4857-4861. https://doi.org/10.1073/pnas.92.11.4857
  19. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-98. https://doi.org/10.1161/hc0102.101442
  20. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005;112:214-223. https://doi.org/10.1161/CIRCULATIONAHA.104.527937
  21. Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 2004;29:1971-1979. https://doi.org/10.1097/01.brs.0000138273.02820.0a
  22. Bae JS, Han HS, Youn DH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 2007;25:1307-1316. https://doi.org/10.1634/stemcells.2006-0561
  23. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004;117(Pt 23):5655-5664. https://doi.org/10.1242/jcs.01488
  24. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of $CD_{4+}CD_{25}$(High) forkhead box $P_{3+}$ regulatory T cells. Clin Exp Immunol 2009;156:149-160. https://doi.org/10.1111/j.1365-2249.2009.03874.x
  25. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005;105:2821-2827. https://doi.org/10.1182/blood-2004-09-3696
  26. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838-3843. https://doi.org/10.1182/blood.V99.10.3838
  27. Augello A, Tasso R, Negrini SM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005;35:1482-1490. https://doi.org/10.1002/eji.200425405
  28. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006;107:367-372. https://doi.org/10.1182/blood-2005-07-2657
  29. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008;111:1327-1333.
  30. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte- derived dendritic cells. Blood 2005;105:4120-4126. https://doi.org/10.1182/blood-2004-02-0586
  31. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815-1822. https://doi.org/10.1182/blood-2004-04-1559
  32. Maccario R, Podesta M, Moretta A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of $CD_{4+}$ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005;90:516-525.
  33. Groh ME, Maitra B, Szekely E, Koc ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005;33:928-934. https://doi.org/10.1016/j.exphem.2005.05.002
  34. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005;105:2214-2219. https://doi.org/10.1182/blood-2004-07-2921
  35. Zhang W, Ge W, Li C, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004;13:263-271. https://doi.org/10.1089/154732804323099190
  36. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007;83:71-76. https://doi.org/10.1097/01.tp.0000244572.24780.54
  37. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both $CD_{34+}$-derived and monocyte-derived dendritic cells. J Immunol 2006;177:2080-2087. https://doi.org/10.4049/jimmunol.177.4.2080
  38. Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006;107:2570-2577. https://doi.org/10.1182/blood-2005-07-2793
  39. Keating A. How do mesenchymal stromal cells suppress T cells? Cell Stem Cell 2008;2:106-108. https://doi.org/10.1016/j.stem.2008.01.007
  40. Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008;2:141-150. https://doi.org/10.1016/j.stem.2007.11.014
  41. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103:4619-4621. https://doi.org/10.1182/blood-2003-11-3909
  42. Ye Z, Wang Y, Xie HY, Zheng SS. Immunosuppressive effects of rat mesenchymal stem cells: involvement of $CD_{4+}CD_{25+}$ regulatory T cells. Hepatobiliary Pancreat Dis Int 2008;7:608-614.
  43. Di Ianni M, Del Papa B, De Ioanni M, et al. Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 2008;36:309-318. https://doi.org/10.1016/j.exphem.2007.11.007
  44. Joo SY, Cho KA, Jung YJ, et al. Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy 2010;12:361-370. https://doi.org/10.3109/14653240903502712
  45. Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005;106:1755-1761. https://doi.org/10.1182/blood-2005-04-1496
  46. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 2009;60:1006-1019. https://doi.org/10.1002/art.24405
  47. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 2010;184:5885-5894. https://doi.org/10.4049/jimmunol.0903143
  48. Nemeth K, Keane-Myers A, Brown JM, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A 2010;107:5652-5657. https://doi.org/10.1073/pnas.0910720107
  49. Madec AM, Mallone R, Afonso G, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 2009;52:1391-1399. https://doi.org/10.1007/s00125-009-1374-z
  50. Choi YS, Jeong JA, Lim DS. Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. Immunol Invest 2012;41:214-229. https://doi.org/10.3109/08820139.2011.619022
  51. Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 2011;33:593-602. https://doi.org/10.1007/s00281-011-0267-7
  52. Dazzi F, Marelli-Berg FM. Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 2008;38:1479-1482. https://doi.org/10.1002/eji.200838433
  53. Krampera M, Cosmi L, Angeli R, et al. Role for interferon- gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006;24:386-398. https://doi.org/10.1634/stemcells.2005-0008
  54. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65:3307-3318. https://doi.org/10.1158/0008-5472.CAN-04-1874
  55. Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006;24:1254-1264. https://doi.org/10.1634/stemcells.2005-0271
  56. Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 2006;24:23-33. https://doi.org/10.1634/stemcells.2004-0176
  57. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007;177:489-500. https://doi.org/10.1083/jcb.200608093
  58. Fiedler J, Roderer G, Gunther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 2002;87:305-312. https://doi.org/10.1002/jcb.10309
  59. Dwyer RM, Potter-Beirne SM, Harrington KA, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007;13:5020-5027. https://doi.org/10.1158/1078-0432.CCR-07-0731
  60. Palumbo R, Galvez BG, Pusterla T, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol 2007;179:33-40. https://doi.org/10.1083/jcb.200704015
  61. Palumbo R, Bianchi ME. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 2004;68:1165-1170. https://doi.org/10.1016/j.bcp.2004.03.048
  62. Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 2007;18:2873-2882. https://doi.org/10.1091/mbc.E07-02-0166
  63. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-550. https://doi.org/10.1038/nrc1388
  64. Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA. Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res 2007;67:186-193. https://doi.org/10.1158/0008-5472.CAN-06-3292
  65. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309-313. https://doi.org/10.1038/6529
  66. Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227-1231. https://doi.org/10.1182/blood.V97.5.1227
  67. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002;99:8932-8937. https://doi.org/10.1073/pnas.132252399
  68. Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005;79:1607-1614. https://doi.org/10.1097/01.TP.0000159029.48678.93
  69. Cahill RA, Wenkert D, Perlman SA, et al. Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 2007;92:2923-2930. https://doi.org/10.1210/jc.2006-2131
  70. Whyte MP, Kurtzberg J, McAlister WH, et al. Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 2003;18:624-636. https://doi.org/10.1359/jbmr.2003.18.4.624
  71. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly eff icient homing to the bone marrow but lose homing ability following culture. Leukemia 2003;17:160-170. https://doi.org/10.1038/sj.leu.2402763
  72. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 2000;28:707-715. https://doi.org/10.1016/S0301-472X(00)00160-0
  73. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 2004;13:595-600. https://doi.org/10.3727/000000004783983747
  74. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 2007;1:74-79. https://doi.org/10.1002/term.8
  75. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002;10:199-206. https://doi.org/10.1053/joca.2001.0504
  76. Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007;15:226-231. https://doi.org/10.1016/j.joca.2006.08.008
  77. Tabbara IA, Zimmerman K, Morgan C, Nahleh Z. Allogeneic hematopoietic stem cell transplantation: complications and results. Arch Intern Med 2002;162:1558- 1566. https://doi.org/10.1001/archinte.162.14.1558
  78. Baron F, Lechanteur C, Willems E, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010;16:838-847. https://doi.org/10.1016/j.bbmt.2010.01.011
  79. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005;11:389-398. https://doi.org/10.1016/j.bbmt.2005.02.001
  80. Ning H, Yang F, Jiang M, et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 2008;22:593-599. https://doi.org/10.1038/sj.leu.2405090
  81. Ball LM, Bernardo ME, Roelofs H, et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 2007;110:2764-2767. https://doi.org/10.1182/blood-2007-04-087056
  82. Bernardo ME, Ball LM, Cometa AM, et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant 2011;46:200-207. https://doi.org/10.1038/bmt.2010.87
  83. Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant 2009;43:447-454. https://doi.org/10.1038/bmt.2008.348
  84. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439-1441. https://doi.org/10.1016/S0140-6736(04)16104-7
  85. Fang B, Song YP, Liao LM, Han Q, Zhao RC. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant 2006;38:389-390. https://doi.org/10.1038/sj.bmt.1705457
  86. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008;371:1579-1586. https://doi.org/10.1016/S0140-6736(08)60690-X
  87. Lucchini G, Introna M, Dander E, et al. Platelet-lysate- expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biol Blood Marrow Transplant 2010;16:1293-1301. https://doi.org/10.1016/j.bbmt.2010.03.017
  88. Muller I, Kordowich S, Holzwarth C, et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 2008;40:25-32. https://doi.org/10.1016/j.bcmd.2007.06.021
  89. Prasad VK, Lucas KG, Kleiner GI, et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 2011;17:534-541. https://doi.org/10.1016/j.bbmt.2010.04.014
  90. Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graftversus-host disease. Transplantation 2006;81:1390-1397. https://doi.org/10.1097/01.tp.0000214462.63943.14
  91. von Bonin M, Stolzel F, Goedecke A, et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 2009;43:245-251. https://doi.org/10.1038/bmt.2008.316
  92. Wu KH, Chan CK, Tsai C, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 2011;91:1412-1416. https://doi.org/10.1097/TP.0b013e31821aba18
  93. Zhou H, Guo M, Bian C, et al. Efficacy of bone marrow- derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 2010;16:403-412. https://doi.org/10.1016/j.bbmt.2009.11.006
  94. Kebriaei P, Isola L, Bahceci E, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009;15:804-811. https://doi.org/10.1016/j.bbmt.2008.03.012
  95. Weng JY, Du X, Geng SX, et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant 2010;45:1732-1740. https://doi.org/10.1038/bmt.2010.195
  96. Kuzmina LA, Petinati NA, Parovichnikova EN, et al. Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease: a phase II study. Stem Cells Int 2012;2012:968213.
  97. Zhang S, Ge J, Sun A, et al. Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source. J Cell Biochem 2006;99:1132-1147. https://doi.org/10.1002/jcb.20949
  98. Jiang S, Haider H, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 2006;99:776-784. https://doi.org/10.1161/01.RES.0000244687.97719.4f
  99. Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112:1128-1135. https://doi.org/10.1161/CIRCULATIONAHA.104.500447
  100. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92-95. https://doi.org/10.1016/j.amjcard.2004.03.034
  101. Chen S, Liu Z, Tian N, et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 2006;18:552-556.
  102. Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005;65:321-329. https://doi.org/10.1002/ccd.20406
  103. Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace 2007;9:167-171. https://doi.org/10.1093/europace/eul184
  104. Yang Z, Zhang F, Ma W, et al. A novel approach to transplanting bone marrow stem cells to repair human myocardial infarction: delivery via a noninfarct-relative artery. Cardiovasc Ther 2010;28:380-385. https://doi.org/10.1111/j.1755-5922.2009.00116.x
  105. Zeinaloo A, Zanjani KS, Bagheri MM, Mohyeddin-Bonab M, Monajemzadeh M, Arjmandnia MH. Intracoronary administration of autologous mesenchymal stem cells in a critically ill patient with dilated cardiomyopathy. Pediatr Transplant 2011;15:E183-E186. https://doi.org/10.1111/j.1399-3046.2010.01366.x
  106. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-2286. https://doi.org/10.1016/j.jacc.2009.06.055
  107. Ichim TE, Solano F, Brenes R, et al. Placental mesenchymal and cord blood stem cell therapy for dilated cardiomyopathy. Reprod Biomed Online 2008;16:898-905. https://doi.org/10.1016/S1472-6483(10)60159-9
  108. Tyndall A. Application of autologous stem cell transplantation in various adult and pediatric rheumatic diseases. Pediatr Res 2012;71(4 Pt 2):433-438. https://doi.org/10.1038/pr.2011.66
  109. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 2005;48:1416-1423. https://doi.org/10.1007/s10350-005-0052-6
  110. Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 2009;52:79-86. https://doi.org/10.1007/DCR.0b013e3181973487
  111. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007;4:50-57.
  112. Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010;227:185-189. https://doi.org/10.1016/j.jneuroim.2010.07.013
  113. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010;67:1187-1194.
  114. Riordan NH, Ichim TE, Min WP, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009;7:29. https://doi.org/10.1186/1479-5876-7-29
  115. Sun LY, Zhang HY, Feng XB, Hou YY, Lu LW, Fan LM. Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 2007;16:121-128. https://doi.org/10.1177/0961203306075793
  116. Liang J, Zhang H, Hua B, et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 2010;69:1423-1429. https://doi.org/10.1136/ard.2009.123463
  117. Sun L, Wang D, Liang J, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010;62:2467-2475. https://doi.org/10.1002/art.27548
  118. Liang J, Gu F, Wang H, et al. Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol 2010;6:486-489. https://doi.org/10.1038/nrrheum.2010.80
  119. Carrion F, Nova E, Ruiz C, et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 2010;19:317-322. https://doi.org/10.1177/0961203309348983
  120. Mao F, Xu WR, Qian H, et al. Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res 2010;59:219-225.
  121. Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford) 2008;47:22-30. https://doi.org/10.1093/rheumatology/kem284
  122. Chen B, Hu J, Liao L, et al. Flk-1+ mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 2010;159:292-302. https://doi.org/10.1111/j.1365-2249.2009.04069.x
  123. Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther 2010;12:R31. https://doi.org/10.1186/ar2939
  124. Park MJ, Park HS, Cho ML, et al. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 2011;63:1668-1680. https://doi.org/10.1002/art.30326
  125. Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med 2007;10:459-466.
  126. Kharaziha P, Hellstrom PM, Noorinayer B, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 2009;21:1199-1205. https://doi.org/10.1097/MEG.0b013e32832a1f6c
  127. Wang H, Cao F, De A, et al. Traff icking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009;27:1548-1558. https://doi.org/10.1002/stem.81
  128. Qiao L, Xu Z, Zhao T, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008;18:500-507. https://doi.org/10.1038/cr.2008.40
  129. Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006;203:1235-1247. https://doi.org/10.1084/jem.20051921
  130. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009;113:4197-4205. https://doi.org/10.1182/blood-2008-09-176198
  131. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-3844. https://doi.org/10.1182/blood-2003-04-1193
  132. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449:557-563. https://doi.org/10.1038/nature06188
  133. Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006;80:267-274. https://doi.org/10.1016/j.yexmp.2005.07.004
  134. Gao P, Ding Q, Wu Z, Jiang H, Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 2010;290:157-166. https://doi.org/10.1016/j.canlet.2009.08.031
  135. Seo SH, Kim KS, Park SH, et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 2011;18:488-495. https://doi.org/10.1038/gt.2010.170
  136. Stagg J, Lejeune L, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 2004;15:597-608. https://doi.org/10.1089/104303404323142042
  137. Gunnarsson S, Bexell D, Svensson A, Siesjo P, Darabi A, Bengzon J. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010;218:140-144. https://doi.org/10.1016/j.jneuroim.2009.10.017
  138. Xin H, Kanehira M, Mizuguchi H, et al. Targeted delivery of $CX_3CL_1$ to multiple lung tumors by mesenchymal stem cells. Stem Cells 2007;25:1618-1626. https://doi.org/10.1634/stemcells.2006-0461
  139. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62:3603-3608.
  140. Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008;26:2332-2338. https://doi.org/10.1634/stemcells.2008-0084
  141. Ren C, Kumar S, Chanda D, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 2008;15:1446-1453. https://doi.org/10.1038/gt.2008.101
  142. Miletic H, Fischer Y, Litwak S, et al. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007;15:1373-1381. https://doi.org/10.1038/sj.mt.6300155
  143. Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010;18:223-231. https://doi.org/10.1038/mt.2009.237
  144. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006;5:755-766. https://doi.org/10.1158/1535-7163.MCT-05-0334
  145. Stoff-Khalili MA, Rivera AA, Mathis JM, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007;105:157-167. https://doi.org/10.1007/s10549-006-9449-8
  146. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008;26:831-841. https://doi.org/10.1634/stemcells.2007-0758
  147. Yong RL, Shinojima N, Fueyo J, et al. Human bone marrow- derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 2009;69:8932-8940. https://doi.org/10.1158/0008-5472.CAN-08-3873
  148. van Eekelen M, Sasportas LS, Kasmieh R, et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 2010;29:3185-3195. https://doi.org/10.1038/onc.2010.75
  149. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009;69:4134-4142.
  150. Mueller LP, Luetzkendorf J, Widder M, Nerger K, Caysa H, Mueller T. TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther 2011;18:229-239. https://doi.org/10.1038/cgt.2010.68
  151. Kanehira M, Xin H, Hoshino K, et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007;14:894-903. https://doi.org/10.1038/sj.cgt.7701079
  152. Tolar J, Nauta AJ, Osborn MJ, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007;25:371-379. https://doi.org/10.1634/stemcells.2005-0620
  153. Wang Y, Huso DL, Harrington J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005;7:509-519. https://doi.org/10.1080/14653240500363216
  154. Ramos CA, Asgari Z, Liu E, et al. An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells 2010;28:1107-1115. https://doi.org/10.1002/stem.433

Cited by

  1. Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/430290
  2. A gene therapy induced emphysema model and the protective role of stem cells vol.9, pp.1, 2014, https://doi.org/10.1186/s13000-014-0195-7
  3. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice vol.1, pp.3, 2014, https://doi.org/10.7603/s40730-014-0016-3
  4. “Ins” and “Outs” of mesenchymal stem cell osteogenesis in regenerative medicine vol.6, pp.2, 2013, https://doi.org/10.4252/wjsc.v6.i2.94
  5. Substance P modulates properties of bone marrow-derived mesenchymal stem cells vol.11, pp.3, 2013, https://doi.org/10.1007/s13770-014-0012-0
  6. Sodium Butyrate Promotes the Differentiation of Rat Bone Marrow Mesenchymal Stem Cells to Smooth Muscle Cells through Histone Acetylation vol.9, pp.12, 2013, https://doi.org/10.1371/journal.pone.0116183
  7. Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord vol.160, pp.1, 2015, https://doi.org/10.1007/s10517-015-3116-1
  8. IL-21-Expressing Mesenchymal Stem Cells Prevent Lethal B-Cell Lymphoma Through Efficient Delivery of IL-21, Which Redirects the Immune System to Target the Tumor vol.24, pp.23, 2013, https://doi.org/10.1089/scd.2015.0103
  9. Therapeutic Effects of Mesenchymal Stem Cells for Patients with Chronic Liver Diseases: Systematic Review and Meta-analysis vol.30, pp.10, 2013, https://doi.org/10.3346/jkms.2015.30.10.1405
  10. Optimization of Pre-transplantation Conditions to Enhance the Efficacy of Mesenchymal Stem Cells vol.11, pp.3, 2013, https://doi.org/10.7150/ijbs.10567
  11. Negative impact of bone-marrow-derived mesenchymal stem cells on dextran sulfate sodium-induced colitis vol.21, pp.7, 2013, https://doi.org/10.3748/wjg.v21.i7.2030
  12. Long‐term three‐dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors vol.112, pp.4, 2013, https://doi.org/10.1002/bit.25485
  13. Substance P enhances the proliferation and migration potential of murine bone marrow-derived mesenchymal stem cell-like cell lines vol.9, pp.4, 2015, https://doi.org/10.3892/etm.2015.2291
  14. New Strategies for Overcoming Limitations of Mesenchymal Stem Cell-Based Immune Modulation vol.8, pp.1, 2015, https://doi.org/10.15283/ijsc.2015.8.1.54
  15. Immunomodulatory effects of umbilical cord‐derived mesenchymal stem cells vol.59, pp.6, 2015, https://doi.org/10.1111/1348-0421.12259
  16. Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine vol.10, pp.18, 2013, https://doi.org/10.2217/nnm.15.113
  17. Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model vol.10, pp.9, 2013, https://doi.org/10.1371/journal.pone.0138846
  18. Tumoricidal Property of Normoxia and Hypoxia Cell-Free Lysate of Wharton’s Jelly-Mesenchymal Stem Cells Toward Various Cancer Cells vol.11, pp.4, 2013, https://doi.org/10.3923/ijcr.2015.186.196
  19. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion vol.2, pp.12, 2013, https://doi.org/10.7603/s40730-015-0029-6
  20. Regulating Stem Cell Secretome Using Injectable Hydrogels with In Situ Network Formation vol.5, pp.21, 2016, https://doi.org/10.1002/adhm.201600497
  21. Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells vol.12, pp.5, 2013, https://doi.org/10.1007/s12015-016-9671-7
  22. Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications vol.103, pp.2, 2016, https://doi.org/10.1007/s12185-015-1918-6
  23. The effect of a sol-gel derived silica coating doped with vitamin E on oxidative stress and senescence of human adipose-derived mesenchymal stem cells (AMSCs) vol.6, pp.35, 2016, https://doi.org/10.1039/c6ra00029k
  24. Bone Marrow Mesenchymal Stromal Cells from Clinical Scale Culture: In Vitro Evaluation of Their Differentiation, Hematopoietic Support, and Immunosuppressive Capacities vol.25, pp.17, 2013, https://doi.org/10.1089/scd.2016.0071
  25. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy vol.20, pp.12, 2016, https://doi.org/10.1111/jcmm.12932
  26. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/1905846
  27. The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/1908365
  28. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α 4-Integrin Expression vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/2562718
  29. Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/5646384
  30. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function vol.2016, pp.None, 2013, https://doi.org/10.1155/2016/6532860
  31. Cysteine Dioxygenase Type 1 Inhibits Osteogenesis by Regulating Wnt Signaling in Primary Mouse Bone Marrow Stromal Cells vol.6, pp.None, 2013, https://doi.org/10.1038/srep19296
  32. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis vol.6, pp.None, 2013, https://doi.org/10.1038/srep26851
  33. Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties vol.49, pp.2, 2013, https://doi.org/10.3109/08916934.2015.1113267
  34. Nanoghosts as a Novel Natural Nonviral Gene Delivery Platform Safely Targeting Multiple Cancers vol.16, pp.3, 2013, https://doi.org/10.1021/acs.nanolett.5b04237
  35. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis vol.11, pp.4, 2013, https://doi.org/10.3892/etm.2016.3083
  36. Selective Cytotoxic Potential of IFN-γ and TNF-α on Breast Cancer Cell Lines (T47D and MCF7) vol.11, pp.1, 2013, https://doi.org/10.3923/ajcb.2016.1.12
  37. Clinical‐grade quality platelet‐rich plasma releasate (PRP‐R/SRGF) from CaCl2‐activated platelet concentrates promoted expansion of mesenchymal stromal cells vol.111, pp.2, 2013, https://doi.org/10.1111/vox.12405
  38. The potential of mesenchymal stromal cells in immunotherapy vol.8, pp.8, 2013, https://doi.org/10.2217/imt-2016-0037
  39. Mesenchymal stem cells promote macrophage polarization toward M2b-like cells vol.348, pp.1, 2013, https://doi.org/10.1016/j.yexcr.2016.08.022
  40. The effects of the DNA methyltranfserases inhibitor 5‐Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells vol.21, pp.2, 2017, https://doi.org/10.1111/jcmm.12972
  41. Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Str vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/3027109
  42. Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer vol.8, pp.None, 2013, https://doi.org/10.3389/fimmu.2017.01770
  43. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.302
  44. Mesenchymal Stem Cell-based Therapy as a New Horizon for Kidney Injuries vol.48, pp.2, 2013, https://doi.org/10.1016/j.arcmed.2017.03.007
  45. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer vol.18, pp.2, 2013, https://doi.org/10.3390/ijms18020345
  46. Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis vol.118, pp.4, 2013, https://doi.org/10.1002/jcb.25757
  47. Villous Chorion: A Potential Source for Pluripotent-like Stromal Cells vol.8, pp.2, 2017, https://doi.org/10.4103/0976-9668.210011
  48. Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy vol.9, pp.28, 2013, https://doi.org/10.1021/acsami.7b05766
  49. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas vol.114, pp.30, 2017, https://doi.org/10.1073/pnas.1700363114
  50. Baculovirus-induced recombinant protein expression in human mesenchymal stromal stem cells: A promoter study vol.39, pp.2, 2013, https://doi.org/10.1016/j.nbt.2017.08.006
  51. MicroRNA expression in bone marrow-derived human multipotent Stromal cells vol.18, pp.None, 2017, https://doi.org/10.1186/s12864-017-3997-7
  52. Harvesting multipotent progenitor cells from a small sample of tonsillar biopsy for clinical applications vol.8, pp.1, 2013, https://doi.org/10.1186/s13287-017-0619-x
  53. Therapeutic potential of mesenchymal stromal cells for hypoxic ischemic encephalopathy: A systematic review and meta-analysis of preclinical studies vol.12, pp.12, 2017, https://doi.org/10.1371/journal.pone.0189895
  54. hASC and DFAT, Multipotent Stem Cells for Regenerative Medicine: A Comparison of Their Potential Differentiation In Vitro vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122699
  55. The use of stem cells in aesthetic dermatology and plastic surgery procedures. A compact review of experimental and clinical applications vol.34, pp.6, 2013, https://doi.org/10.5114/ada.2017.72456
  56. Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF vol.70, pp.2, 2013, https://doi.org/10.1007/s10616-017-0131-2
  57. Three-Dimensional Spheroid Culture Increases Exosome Secretion from Mesenchymal Stem Cells vol.15, pp.4, 2013, https://doi.org/10.1007/s13770-018-0139-5
  58. Mini Review: Application of Human Mesenchymal Stem Cells in Gene and Stem Cells Therapy Era vol.4, pp.4, 2013, https://doi.org/10.1007/s40778-018-0147-3
  59. Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair vol.4, pp.4, 2013, https://doi.org/10.1021/acsbiomaterials.7b00005
  60. Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/4083921
  61. Mesenchymal Stem Cell Therapy for Ischemic Tissues vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/8179075
  62. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/9415367
  63. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning vol.9, pp.None, 2013, https://doi.org/10.3389/fimmu.2018.02837
  64. Anticancer cellular immunotherapies derived from umbilical cord blood vol.18, pp.2, 2013, https://doi.org/10.1080/14712598.2018.1402002
  65. Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation vol.12, pp.3, 2018, https://doi.org/10.1002/term.2565
  66. Could mesenchymal stem cell therapy help in the treatment of muscle damage caused by Bothrops alternatus venom? vol.48, pp.3, 2013, https://doi.org/10.1590/0103-8478cr20170760
  67. The Effect of Hexanoyl Glycol Chitosan on the Proliferation of Human Mesenchymal Stem Cells vol.10, pp.8, 2013, https://doi.org/10.3390/polym10080839
  68. Mobilization of human mesenchymal stem cells through different cytokines and growth factors after their immobilization by sulfur mustard vol.293, pp.None, 2013, https://doi.org/10.1016/j.toxlet.2018.02.011
  69. Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells vol.115, pp.36, 2013, https://doi.org/10.1073/pnas.1802568115
  70. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells vol.11, pp.1, 2013, https://doi.org/10.1186/s13045-018-0554-z
  71. Safety and Efficacy of Intraventricular Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in Hemorrhagic Stroke Model vol.9, pp.None, 2013, https://doi.org/10.1038/s41598-019-42182-1
  72. Mesenchymal stem cells as adjuvant therapy for limb lengthening in achondroplasia vol.28, pp.3, 2013, https://doi.org/10.1097/bpb.0000000000000571
  73. Labeling Stem Cells with a New Hybrid Bismuth/Carbon Nanotube Contrast Agent for X-Ray Imaging vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/2183051
  74. Mesenchymal Stem Cells Exhibit Both a Proinflammatory and Anti-Inflammatory Effect on Saccular Aneurysm Formation in a Rabbit Model vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/3618217
  75. Matrix Rigidity‐Dependent Regulation of Ca 2+ at Plasma Membrane Microdomains by FAK Visualized by Fluorescence Resonance Energy Transfer vol.6, pp.4, 2013, https://doi.org/10.1002/advs.201801290
  76. Stem cell therapy for knee osteoarthritis: a narrative review of a rapidly evolving treatment with implications for physical therapy management vol.24, pp.1, 2013, https://doi.org/10.1080/10833196.2019.1585674
  77. Soluble matrix protein is a potent modulator of mesenchymal stem cell performance vol.116, pp.6, 2019, https://doi.org/10.1073/pnas.1812951116
  78. Therapeutic Use of Intrathecal Mesenchymal Stem Cells in patients with Multiple Sclerosis: A Pilot Study with Booster Injection vol.48, pp.2, 2019, https://doi.org/10.1080/08820139.2018.1504301
  79. Mesenchymal Stem Cells-Potential Applications in Kidney Diseases vol.20, pp.10, 2013, https://doi.org/10.3390/ijms20102462
  80. Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability vol.854, pp.None, 2013, https://doi.org/10.1016/j.ejphar.2019.02.043
  81. Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox vol.11, pp.8, 2013, https://doi.org/10.3390/cancers11081087
  82. Orchestrating stem cell fate: Novel tools for regenerative medicine vol.11, pp.8, 2013, https://doi.org/10.4252/wjsc.v11.i8.464
  83. Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients vol.74, pp.9, 2013, https://doi.org/10.1093/gerona/gly227
  84. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies vol.56, pp.10, 2019, https://doi.org/10.1007/s12035-019-1570-x
  85. Changes in the Circulatory and Lymphatic Systems of Internal Genitals in Female Rats after Intravenous and Lymphotropic Administration of Multipotent Mesenchymal Stem Cells and Products Secreted by Th vol.168, pp.1, 2013, https://doi.org/10.1007/s10517-019-04669-9
  86. Impact of humanised isolation and culture conditions on stemness and osteogenic potential of bone marrow derived mesenchymal stromal cells vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-52442-9
  87. Mesenchymal Stem Cells for Coronavirus (COVID-19)-Induced Pneumonia: Revisiting the Paracrine Hypothesis with New Hopes? vol.11, pp.3, 2013, https://doi.org/10.14336/ad.2020.0403
  88. p19Arf sensitizes B16 melanoma cells to interferon-β delivered via mesenchymal stem cells in vitro vol.53, pp.3, 2013, https://doi.org/10.1590/1414-431x20198876
  89. Safety of Technique and Procedure of Stromal Vascular Fraction Therapy: From Liposuction to Cell Administration vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/2863624
  90. Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/8837654
  91. Syndecan-1 Facilitates the Human Mesenchymal Stem Cell Osteo-Adipogenic Balance vol.21, pp.11, 2013, https://doi.org/10.3390/ijms21113884
  92. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy vol.77, pp.14, 2020, https://doi.org/10.1007/s00018-020-03454-6
  93. Human mesenchymal stem cells inhibit the differentiation and effector functions of monocytes vol.26, pp.5, 2013, https://doi.org/10.1177/1753425919899132
  94. Inflammatory Mediators in Glioma Microenvironment Play a Dual Role in Gliomagenesis and Mesenchymal Stem Cell Homing: Implication for Cellular Therapy vol.4, pp.4, 2013, https://doi.org/10.1016/j.mayocpiqo.2020.04.006
  95. The Therapeutic Potential of Extracellular Vesicles Versus Mesenchymal Stem Cells in Liver Damage vol.17, pp.4, 2013, https://doi.org/10.1007/s13770-020-00267-3
  96. A comparative study on immunophenotypic characterization and osteogenic differentiation of human mesenchymal stromal cells derived from periodontal ligament and gingiva vol.91, pp.9, 2013, https://doi.org/10.1002/jper.19-0535
  97. ZBP1 (DAI/DLM-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling vol.8, pp.1, 2020, https://doi.org/10.1038/s41413-020-0085-4
  98. Role of cancer stem cells in the development of giant cell tumor of bone vol.20, pp.None, 2013, https://doi.org/10.1186/s12935-020-01218-7
  99. Mapping current research and identifying hotspots on mesenchymal stem cells in cardiovascular disease vol.11, pp.1, 2013, https://doi.org/10.1186/s13287-020-02009-7
  100. 3D printable Sodium alginate-Matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation vol.35, pp.6, 2013, https://doi.org/10.1177/0885328220961261
  101. Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5513309
  102. Safety of Intraovarian Injection of Human Mesenchymal Stem Cells in a Premature Ovarian Insufficiency Mouse Model vol.30, pp.None, 2013, https://doi.org/10.1177/0963689720988502
  103. Banking of AT-MSC and its Influence on Their Application to Clinical Procedures vol.9, pp.None, 2013, https://doi.org/10.3389/fbioe.2021.773123
  104. Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord vol.265, pp.None, 2021, https://doi.org/10.1016/j.lfs.2020.118755
  105. Hydrogels for Large-Scale Expansion of Stem Cells vol.128, pp.None, 2013, https://doi.org/10.1016/j.actbio.2021.03.026
  106. Controlled aggregation enhances immunomodulatory potential of mesenchymal stromal cell aggregates vol.10, pp.8, 2021, https://doi.org/10.1002/sctm.19-0414
  107. Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery vol.12, pp.8, 2013, https://doi.org/10.3390/mi12080897
  108. MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line vol.279, pp.None, 2013, https://doi.org/10.1016/j.lfs.2021.119643
  109. Engineering cartilage graft using mesenchymal stem cell laden polyacrylamide-galactoxyloglucan hydrogel for transplantation vol.36, pp.3, 2013, https://doi.org/10.1177/08853282211019521
  110. Transcriptional profiling of circulating mononuclear cells from patients with chronic obstructive pulmonary disease receiving mesenchymal stromal cell infusions vol.10, pp.11, 2013, https://doi.org/10.1002/sctm.21-0024
  111. Uncharted waters: mesenchymal stem cell treatment for pediatric refractory rheumatic diseases; a single center case series vol.19, pp.1, 2013, https://doi.org/10.1186/s12969-021-00575-5
  112. Glucose and Serum Deprivation Led to Altered Proliferation, Differentiation Potential and AMPK Activation in Stem Cells from Human Deciduous Tooth vol.12, pp.1, 2013, https://doi.org/10.3390/jpm12010018
  113. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease vol.14, pp.1, 2022, https://doi.org/10.3390/pharmaceutics14010011