References
- Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord 2008;9:329-343. https://doi.org/10.1007/s11154-008-9101-5
- Poitout V, Robertson RP. Minireview: secondary beta-cell failure in type 2 diabetes: a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002;143:339-342. https://doi.org/10.1210/endo.143.2.8623
- Rhodes CJ. Processing of the insulin molecule. In: Le- Roith D, Taylor SI, Olefsky JM, eds. Diabetes Mellitus: A Fundamental and Clinical Text. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2004:27-50.
- Elks ML. Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release. Endocrinology 1993;133:208-214. https://doi.org/10.1210/endo.133.1.8319569
- Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab 1995;80:1584-1590.
- Ritz-Laser B, Meda P, Constant I, et al. Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate. Endocrinology 1999;140:4005-4014. https://doi.org/10.1210/endo.140.9.6953
- Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001;50:69-76. https://doi.org/10.2337/diabetes.50.1.69
- Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 2001;50:1771-1777. https://doi.org/10.2337/diabetes.50.8.1771
- Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A 1998;95:2498-2502. https://doi.org/10.1073/pnas.95.5.2498
- El-Assaad W, Buteau J, Peyot ML, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 2003;144:4154-4163. https://doi.org/10.1210/en.2003-0410
- Huang CJ, Lin CY, Haataja L, et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 2007;56:2016-2027. https://doi.org/10.2337/db07-0197
- Marchetti P, Bugliani M, Lupi R, et al. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 2007;50:2486-2494. https://doi.org/10.1007/s00125-007-0816-8
- Shen X, Ellis RE, Lee K, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 2001;107:893-903. https://doi.org/10.1016/S0092-8674(01)00612-2
- Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K. A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 2003;4:265-271. https://doi.org/10.1016/S1534-5807(03)00022-4
- Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000;287:664-666. https://doi.org/10.1126/science.287.5453.664
- Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002;16:1345-1355. https://doi.org/10.1101/gad.992302
- Maundrell K, Antonsson B, Magnenat E, et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/ stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 1997;272:25238-25242. https://doi.org/10.1074/jbc.272.40.25238
- Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8:519-529. https://doi.org/10.1038/nrm2199
- Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 2007;32:469-476. https://doi.org/10.1016/j.tibs.2007.09.003
- Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008;29:42-61. https://doi.org/10.1210/er.2007-0015
- Kaufman RJ, Scheuner D, Schroder M, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 2002;3:411-421. https://doi.org/10.1038/nrm829
- Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000;2:326-332. https://doi.org/10.1038/35014014
- Del Guerra S, Marselli L, Lupi R, et al. Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J Diabetes Complications 2005;19:60-64. https://doi.org/10.1016/j.jdiacomp.2004.05.001
- Efanova IB, Zaitsev SV, Zhivotovsky B, et al. Glucose and tolbutamide induce apoptosis in pancreatic beta-cell: a process dependent on intracellular Ca2+ concentration. J Biol Chem 1998;273:33501-33507. https://doi.org/10.1074/jbc.273.50.33501
- Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355:2427-2443. https://doi.org/10.1056/NEJMoa066224
- Takahashi A, Nagashima K, Hamasaki A, et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase. Diabetes Res Clin Pract 2007;77:343-350. https://doi.org/10.1016/j.diabres.2006.12.021
- Qian L, Zhang S, Xu L, Peng Y. Endoplasmic reticulum stress in beta cells: latent mechanism of secondary sulfonylurea failure in type 2 diabetes? Med Hypotheses 2008;71:889-891. https://doi.org/10.1016/j.mehy.2008.07.031
- Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005;90:501-506. https://doi.org/10.1210/jc.2004-0699
- Laybutt DR, Preston AM, Akerfeldt MC, et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007;50:752-763. https://doi.org/10.1007/s00125-006-0590-z
- Jaber LA, Antal EJ, Slaughter RL, Welshman IR. Comparison of pharmacokinetics and pharmacodynamics of short- and long-term glyburide therapy in NIDDM. Diabetes Care 1994;17:1300-1306. https://doi.org/10.2337/diacare.17.11.1300
- Oslowski CM, Urano F. The binary switch between life and death of endoplasmic reticulum-stressed beta cells. Curr Opin Endocrinol Diabetes Obes 2010;17:107-112. https://doi.org/10.1097/MED.0b013e3283372843
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
- Price J, Zaidi AK, Bohensky J, Srinivas V, Shapiro IM, Ali H. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol 2010;222:502-508.
- Ishigaki S, Fonseca SG, Oslowski CM, et al. AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1. Cell Death Differ 2010;17:774-786. https://doi.org/10.1038/cdd.2009.175
Cited by
- Silibinin protects β cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway vol.34, pp.4, 2013, https://doi.org/10.3892/ijmm.2014.1883
- Glibenclamide Prevents Diabetes in NOD Mice vol.11, pp.12, 2013, https://doi.org/10.1371/journal.pone.0168839
- Glibenclamide exacerbates adriamycin-induced cardiotoxicity by activating oxidative stress-induced endoplasmic reticulum stress in rats vol.15, pp.4, 2013, https://doi.org/10.3892/etm.2018.5862
- Role of silibinin in the management of diabetes mellitus and its complications vol.41, pp.8, 2018, https://doi.org/10.1007/s12272-018-1047-x
- Glibenclamide protects against thioacetamide-induced hepatic damage in Wistar rat: investigation on NLRP3, MMP-2, and stellate cell activation vol.391, pp.11, 2013, https://doi.org/10.1007/s00210-018-1540-2
- Protective Effect and Mechanism of Bone Morphogenetic Protein-4 on Apoptosis of Human Lens Epithelium Cells under Oxidative Stress vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8109134