DOI QR코드

DOI QR Code

Additional antihypertensive effect of magnesium supplementation with an angiotensin II receptor blocker in hypomagnesemic rats

  • Jin, Kyubok (Department of Internal Medicine, Inje University Haeundae Paik Hospital) ;
  • Kim, Tae Hee (Department of Internal Medicine, Inje University Busan Paik Hospital) ;
  • Kim, Yeong Hoon (Department of Internal Medicine, Inje University Busan Paik Hospital) ;
  • Kim, Yang Wook (Department of Internal Medicine, Inje University Haeundae Paik Hospital)
  • Published : 2013.03.01

Abstract

Background/Aims: Magnesium (Mg) is an essential element for vascular function and blood pressure regulation. Several studies have demonstrated that Mg concentration is inversely associated with blood pressure, and that Mg supplementation attenuates hypertension. The purpose of this study was to evaluate the effect of dietary Mg supplementation on the blood pressure effects of an angiotensin II receptor blocker (ARB) in hypomagnesemic rats. Methods: Fifty male Sprague-Dawley rats were randomly divided into Mg-deficient (n = 30), normal diet plus Mg (n = 10), and control groups (n = 10). Mg-free, high-Mg, and normal-Mg diets were respectively fed to the rats. After 14 weeks, 10 of the 30 Mg-deficient rats were treated with Mg, 10 Mg-deficient rats received an ARB, and 10 Mg-deficient rats received an ARB plus Mg for 4 weeks. Results: Systolic blood pressure was significantly higher in the Mg-deficient rats than in the control rats at week 14. Hypomagnesemic rats exhibited decreased systolic blood pressure after treatment with Mg, and systolic blood pressure showed a greater decrease after ARB treatment. Treatment with the ARB/Mg combination resulted in the greatest decrease in systolic blood pressure. Mg deficiency did not affect the serum angiotensin II level, but did increase the serum aldosterone concentration. Concomitant Mg/ARB supplementation significantly decreased the elevated serum aldosterone level in hypomagnesemic rats. Kidney tissues of the hypomagnesemic rats revealed mild to moderate inflammatory infiltrates. Mg and/or ARB treatment did not reverse the inflammatory reaction in the kidneys of hypomagnesemic rats. Conclusions: Concurrent dietary Mg supplementation can enhance ARB-induced blood pressure reduction in rats with hypomagnesemic hypertension.

Keywords

References

  1. Touyz RM. Role of magnesium in the pathogenesis of hypertension. Mol Aspects Med 2003;24:107-136. https://doi.org/10.1016/S0098-2997(02)00094-8
  2. Laurant P, Dalle M, Berthelot A, Rayssiguier Y. Timecourse of the change in blood pressure level in magnesium-deficient Wistar rats. Br J Nutr 1999;82:243-251.
  3. Adrian M, Chanut E, Laurant P, Gaume V, Berthelot A. A long-term moderate magnesium-deficient diet aggravates cardiovascular risks associated with aging and increases mortality in rats. J Hypertens 2008;26:44-52. https://doi.org/10.1097/HJH.0b013e3282f09f68
  4. Fox C, Ramsoomair D, Carter C. Magnesium: its proven and potential clinical significance. South Med J 2001;94:1195-1201. https://doi.org/10.1097/00007611-200112000-00013
  5. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev 2003;24:47-66.
  6. Sontia B, Touyz RM. Role of magnesium in hypertension. Arch Biochem Biophys 2007;458:33-39. https://doi.org/10.1016/j.abb.2006.05.005
  7. Berthon N, Laurant P, Hayoz D, Fellmann D, Brunner HR, Berthelot A. Magnesium supplementation and deoxycorticosterone acetate: salt hypertension: effect on arterial mechanical properties and on activity of endothelin-1. Can J Physiol Pharmacol 2002;80:553-561. https://doi.org/10.1139/y02-082
  8. Blache D, Devaux S, Joubert O, et al. Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med 2006;41:277-284. https://doi.org/10.1016/j.freeradbiomed.2006.04.008
  9. Touyz RM. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 2008;294:H1103-H1118. https://doi.org/10.1152/ajpheart.00903.2007
  10. Shechter M, Sharir M, Labrador MJ, Forrester J, Silver B, Bairey Merz CN. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 2000;102:2353-2358. https://doi.org/10.1161/01.CIR.102.19.2353
  11. Touyz RM. Magnesium supplementation as an adjuvant to synthetic calcium channel antagonists in the treatment of hypertension. Med Hypotheses 1991;36:140-141. https://doi.org/10.1016/0306-9877(91)90256-X
  12. Saito N, Abbu GC, Konishi Y, Nishiyama S, Okada T. Magnesium, calcium and trace elements in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol Suppl 1995;22:S212-S214. https://doi.org/10.1111/j.1440-1681.1995.tb02887.x
  13. Makynen H, Kahonen M, Arvola P, Wuorela H, Vapaatalo H, Porsti I. Dietary calcium and magnesium supplements in spontaneously hypertensive rats and isolated arterial reactivity. Br J Pharmacol 1995;115:1455-1462. https://doi.org/10.1111/j.1476-5381.1995.tb16637.x
  14. Evans GH, Weaver CM, Harrington DD, Babbs CF Jr. Dietary magnesium does not affect blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens A 1989;11:619-632.
  15. Berthelot A, Esposito J. Effects of dietary magnesium on the development of hypertension in the spontaneously hypertensive rat. J Am Coll Nutr 1983;2:343-353. https://doi.org/10.1080/07315724.1983.10719931
  16. Touyz RM, Milne FJ. Magnesium supplementation attenuates, but does not prevent, development of hypertension in spontaneously hypertensive rats. Am J Hypertens 1999;12(8 Pt 1):757-765. https://doi.org/10.1016/S0895-7061(99)00064-3
  17. Laurant P, Touyz RM. Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 2000;18:1177-1191. https://doi.org/10.1097/00004872-200018090-00003
  18. Touyz RM, Mercure C, Reudelhuber TL. Angiotensin II type I receptor modulates intracellular free Mg2+ in renally derived cells via Na+-dependent Ca2+-independent mechanisms. J Biol Chem 2001;276:13657-13663. https://doi.org/10.1074/jbc.M008101200
  19. Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993;21(6 Pt 2):1024-1029. https://doi.org/10.1161/01.HYP.21.6.1024
  20. Jin SY, Jeong HJ, Sung SH, et al. Practical standardization in renal biopsy reporting. Korean J Pathol 2010;44:613-622. https://doi.org/10.4132/KoreanJPathol.2010.44.6.613
  21. Resnick LM, Bardicef O, Altura BT, Alderman MH, Altura BM. Serum ionized magnesium: relation to blood pressure and racial factors. Am J Hypertens 1997;10(12 Pt 1):1420-1424. https://doi.org/10.1016/S0895-7061(97)00364-6
  22. Kesteloot H, Joossens JV. Relationship of dietary sodium, potassium, calcium, and magnesium with blood pressure: Belgian Interuniversity Research on Nutrition and Health. Hypertension 1988;12:594-599. https://doi.org/10.1161/01.HYP.12.6.594
  23. Kisters K, Tepel M, Spieker C, et al. Decreased membrane Mg2+ concentrations in a subgroup of hypertensives: membrane model for the pathogenesis of primary hypertension. Am J Hypertens 1998;11(11 Pt 1):1390-1393. https://doi.org/10.1016/S0895-7061(98)00169-1
  24. Kawano Y, Matsuoka H, Takishita S, Omae T. Effects of magnesium supplementation in hypertensive patients: assessment by office, home, and ambulatory blood pressures. Hypertension 1998;32:260-265. https://doi.org/10.1161/01.HYP.32.2.260
  25. Laurant P, Kantelip JP, Berthelot A. Dietary magnesium supplementation modif ies blood pressure and cardiovascular function in mineralocorticoid-salt hypertensive rats but not in normotensive rats. J Nutr 1995;125:830-841.
  26. Sanjuliani AF, de Abreu Fagundes VG, Francischetti EA. Effects of magnesium on blood pressure and intracellular ion levels of Brazilian hypertensive patients. Int J Cardiol 1996;56:177-183. https://doi.org/10.1016/0167-5273(96)02716-7
  27. Widman L, Wester PO, Stegmayr BK, Wirell M. The dose-dependent reduction in blood pressure through administration of magnesium: a double blind placebo controlled cross-over study. Am J Hypertens 1993;6:41-45. https://doi.org/10.1093/ajh/6.1.41
  28. Cappuccio FP, Markandu ND, Beynon GW, Shore AC, Sampson B, MacGregor GA. Lack of effect of oral magnesium on high blood pressure: a double blind study. Br Med J (Clin Res Ed) 1985;291:235-238. https://doi.org/10.1136/bmj.291.6490.235
  29. Ferrara LA, Iannuzzi R, Castaldo A, Iannuzzi A, Dello Russo A, Mancini M. Long-term magnesium supplementation in essential hypertension. Cardiology 1992;81:25-33. https://doi.org/10.1159/000175772
  30. Lind L, Lithell H, Pollare T, Ljunghall S. Blood pressure response during long-term treatment with magnesium is dependent on magnesium status: a double-blind, placebo-controlled study in essential hypertension and in subjects with high-normal blood pressure. Am J Hypertens 1991;4:674-679. https://doi.org/10.1093/ajh/4.8.674
  31. Barbagallo M, Dominguez LJ, Galioto A, Pineo A, Belvedere M. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res 2010;23:131-137.
  32. Kisters K. Oral magnesium supplementation improves borderline hypertension. Magnes Res 2011;24:17.
  33. Rosanoff A. Magnesium supplements may enhance the effect of antihypertensive medications in stage 1 hypertensive subjects. Magnes Res 2010;23:27-40.
  34. Hatzistavri LS, Sarafidis PA, Georgianos PI, et al. Oral magnesium supplementation reduces ambulatory blood pressure in patients with mild hypertension. Am J Hypertens 2009;22:1070-1075. https://doi.org/10.1038/ajh.2009.126
  35. Guerrero-Romero F, Rodriguez-Moran M. The effect of lowering blood pressure by magnesium supplementation in diabetic hypertensive adults with low serum magnesium levels: a randomized, double-blind, placebo-controlled clinical trial. J Hum Hypertens 2009;23:245-251. https://doi.org/10.1038/jhh.2008.129
  36. Ameen M, Davies JE, Ng LL. A comparison of free intracellular calcium and magnesium levels in the vascular smooth muscle and striated muscle cells of the spontaneously hypertensive and Wistar Kyoto normotensive rat. Ann N Y Acad Sci 1991;639:550-553. https://doi.org/10.1111/j.1749-6632.1991.tb17348.x
  37. Laurant P, Hayoz D, Brunner HR, Berthelot A. Effect of magnesium deficiency on blood pressure and mechanical properties of rat carotid artery. Hypertension 1999;33:1105-1110. https://doi.org/10.1161/01.HYP.33.5.1105
  38. Laurant P, Berthelot A. Inf luence of endothelium on Mg(2+)-induced relaxation in noradrenaline-contracted aorta from DOCA-salt hypertensive rat. Eur J Pharmacol 1994;258:167-172. https://doi.org/10.1016/0014-2999(94)90477-4
  39. Touyz RM, Pu Q, He G, et al. Effects of low dietary magnesium intake on development of hypertension in stroke-prone spontaneously hypertensive rats: role of reactive oxygen species. J Hypertens 2002;20:2221-2232. https://doi.org/10.1097/00004872-200211000-00022
  40. Altura BM, Altura BT, Gebrewold A, Ising H, Gunther T. Noise-induced hypertension and magnesium in rats: relationship to microcirculation and calcium. J Appl Physiol 1992;72:194-202. https://doi.org/10.1152/jappl.1992.72.1.194
  41. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-415. https://doi.org/10.1038/332411a0
  42. Moncada S, Vane JR. The role of prostacyclin in vascular tissue. Fed Proc 1979;38:66-71.
  43. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 1992;110:169-173. https://doi.org/10.1007/BF02454195
  44. Briel RC, Lippert TH, Zahradnik HP. Action of magnesium sulfate on platelet prostacyclin interaction and prostacyclin of blood vessels. Am J Obstet Gynecol 1985;153:232. https://doi.org/10.1016/0002-9378(85)90124-3
  45. Ginn HE, Cade R, McCallum T, Fregley M. Aldosterone secretion in magnesium-deficient rats. Endocrinology 1967;80:969-971. https://doi.org/10.1210/endo-80-5-969
  46. Altura BM, Altura BT. Magnesium and cardiovascular biology: an important link between cardiovascular risk factors and atherogenesis. Cell Mol Biol Res 1995;41:347-359.
  47. Yanahira S, Morita M, Aoe S, et al. Effects of lactitol-oligosaccharides on calcium and magnesium absorption in rats. J Nutr Sci Vitaminol (Tokyo) 1997;43:123-132. https://doi.org/10.3177/jnsv.43.123
  48. Iseri LT, French JH. Magnesium: nature's physiologic calcium blocker. Am Heart J 1984;108:188-193. https://doi.org/10.1016/0002-8703(84)90572-6

Cited by

  1. Anti-Hypertensive Effect of a Solar Salt Diet in Elderly Hypertensive Patients: A Preliminary Randomized, Double-Blind Clinical Trial vol.15, pp.3, 2015, https://doi.org/10.15384/kjhp.2015.15.3.98