Young Children's 'More Means More' Bias and Knowledge Change Process Regarding a Lever Phenomenon

지렛대 현상에 대한 유아의 '많은 것이 더 많은' 편향과 지식 변화 과정

  • 김헤라 (대덕대학교 유아교육과)
  • Published : 2013.04.30

Abstract

The purpose of this study is to investigate the young children's 'more means more' bias and knowledge change process regarding a lever phenomenon, especially the relationship between the weight of an object and the strength of force and between the length of a lever and the strength of force. Subjects, who were presented with the tasks, were eight young children 5 years of age. Major findings were as followings. First, most of the subjects have a 'more means more' bias about the relationship between the weight of an object and the strength of force and between the length of a lever and the strength of force regarding a lever phenomenon. This meant that young children have similar concepts about a lever phenomenon regardless of whether it is right or wrong physically. Second, young children tried to make sure of their knowledge during experiments. They chose the evidence which confirmed their knowledge. But they tried to change their knowledge, when the evidence presented did not correspond to their knowledge. These findings contribute to understanding young children's 'more means more' bias and knowledge change process about a lever phenomenon and can be used in preschool science education programs and curriculums.

본 연구의 목적은 지렛대 현상에서 '추의 무게와 힘의 세기', '지렛대의 길이와 힘의 세기'의 관계에 대한 유아의 '많은 것이 더 많은' 편향을 조사하고, 직접적인 실험을 통해 유아의 사전 지식이 변화되는 과정을 살펴보는 데 있다. 이를 위해 만 5세 유아 8명을 대상으로 일대일 실험 면접을 실시하였으며, 기록과 녹음을 통해 수집된 자료를 분석하였다. 주된 결과는 다음과 같다. 첫째, 조사대상 유아의 대부분은 '추의 무게와 힘의 세기', '지렛대의 길이와 힘의 세기'에 대해서 '많은 것이 더 많은' 편향을 지니고 있었다. 이들의 대부분은 '추의 무게와 힘의 세기'에 대해서는 물리적으로 정확한 지식을 지니고 있었으나. '지렛대의 길이와 힘의 세기'에 대해서는 물리적으로 잘못된 지식을 지니고 있었다. 둘째, 실험을 통해 유아의 지식이 변화하는 과정을 살펴본 결과, 유아는 자신의 사전 지식을 확인하고자 하는 경향을 보였다. 자신의 지식이 맞는지 확인하고자 증거를 선택하였고 자신의 지식이 맞으면 기뻐하며 당연하다는 반응을 보였다. 그러나 자신의 사전 지식과 일치하지 않는 증거가 나타났을 때 사전 지식을 변화하여 새로운 지식을 구성하려고 시도하였다. 대부분의 유아는 직접적인 실험을 통해 지렛대 현상 중 '지렛대의 길이와 힘의 세기'에 대한 '많은 것이 더많은' 편향을 수정하였고 이러한 과정은 유아의 지렛대 현상에 대한 과학적 이해를 도울 수 있었다. 이상의 연구결과는 지렛대 현상에 대한 유아의 사고 특성과 유아의 지식이 변화하는 과정을 이해하는데 기여하며, 이를 토대로 과학현상에 대한 보다 발달적이고 교육적인 유아과학교육을 위한 기초자료로 활용될 수 있으리라 기대한다.

Keywords

References

  1. 김헤라, 이순형(2009). 유아의 빛과 그림자 현상에 대한 지식의 변화, 유아교육연구, 29(3), 305-323.
  2. 송명자, 박충일(1990). 초등학교 아동의 평형과제 해결을 위한 규칙지식 분석, 동아대학교 대학원 논문집, 15, 99-118.
  3. 홍지명, 문병환(2012). ARCS 동기화를 통한 과학교육 활동이 유아의 과학적 태도 및 과학적탐구능력에 미치는 효과. 한국보육지원학회지, 8(6), 127-146.
  4. Baillageon, R. (1987). Object permanence in 3.5- and 4.5-month-old infants. Developmental Psychology, 23, 655-664. https://doi.org/10.1037/0012-1649.23.5.655
  5. Baillargeon, R. (1994) How do infants learn about the physical world? Current directions in Psychological Science, 3, 133-140. https://doi.org/10.1111/1467-8721.ep10770614
  6. Chen, Z., Sanchez, R., & Campbell, T. (1997). From beyond to within their grasp: The rudiments of analogical problem solving in 10- and 13-month-olds. Developmental Psychology, 33, 780-801.
  7. Chi, M. (1994). Conceptual change and ontological categories, In R. N. Giere (Ed.), Cognitive models of science. Minneapolis, MN: University in Minnesota Press.
  8. diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105-225. https://doi.org/10.1080/07370008.1985.9649008
  9. Flavell, J. H., Miller, P., & Miller, S. (2002). Cognitive development (4th ed.). Englewood Cliffs, NJ: Prentice Hall.
  10. Ginsburg, H., & Opper, S. (1988). Piaget's theory of intellectual development : A introduction (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.
  11. Gopnik, A., & Sobel, D. (2000). Detecting blickets: How young children use information about novel causal powers in categorization and induction. Child Development, 71, 1205-1222. https://doi.org/10.1111/1467-8624.00224
  12. Goswami, U. (1995). Transitive relational mappings in three-and four-year-olds: The analogy of Goldilocks and the three bears. Child Development, 66, 877-892. https://doi.org/10.2307/1131956
  13. Goswami, U. (1996). Analogical reasoning and cognitive development. In H. Reese (Ed.), Advances in child development and behaviour(Vol. 26). New York: Academic Press.
  14. Halford, G. (1993). Children's understanding: The development of mental models. Hillsdale, NJ: Lawrence Erlbaum.
  15. Harlen, W. (1993). Teaching and learning primary science (2nd ed.). London; Philadelphia : Paul Chapman Publishing.
  16. Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.
  17. Karmiloff-Smith, A., & Inhelder, B. (1974). If you want to get ahead, get a theory. Cognition, 3, 195-212. https://doi.org/10.1016/0010-0277(74)90008-0
  18. Keil, F. (1979). Semantic and conceptual development. Combridge, MA: Harvard University Press.
  19. Kloos, H., & Amazeen, E. (2005). Building blocks of physical knowledge: Can children learn how two dimensions are correlate? Advances in Psychology Research, 35, 1-13.
  20. Kloos, H., & Somerville, S. C. (2001). Providing impetus for conceptual change : the effect of organizing the input. Cognitive Development, 16, 737-759. https://doi.org/10.1016/S0885-2014(01)00053-3
  21. Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1, 113-129. https://doi.org/10.1207/S15327647JCD0101N_11
  22. Kuhn, D., Garcia-Mila, M., Zohar, A., & Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60 (Serial No. 245).
  23. Mandler, J., & McDonough, L. (1998). Studies in inductive inference in infancy. Cognitive Psychology, 37, 60-96. https://doi.org/10.1006/cogp.1998.0691
  24. Minstrell, J. (1992). Facets of students' knowledge and relevant instruction. In R. Duit, F. Goldberg, and H. Niedderer (Eds.), Research in Physics learning : Theoretical issues and empirical studies(pp. 110-128). Kiel, Germany: Institute for Science Education at the University of Kiel.
  25. Perner, D. & Klahr, D. (1996). The interaction of domain-specific knowledge and domain-general discovery strategies: a study with sinking objects. Child Development, 67, 2709-2727. https://doi.org/10.2307/1131748
  26. Piaget, J. (1929). The child's conception of the world. London: Kegan Paul, Trench, & Trubner.
  27. Piaget, J. (1930). The child's conception of the physical causality. London: Kegan Paul, Trench, & Trubner.
  28. Ruffman, T., Perner, J., Olson, D., & Doherty, M. (1993). Reflecting on scientific thinking: Children's understanding of the hypothesis-evidence relation. Child Development, 64, 1617-1636. https://doi.org/10.2307/1131459
  29. Schapiro, A., & McClelland, J. (2009). A connectionist model of a continuous developmental transition in the balance scale task. Cognition, 110, 395-411. https://doi.org/10.1016/j.cognition.2008.11.017
  30. Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49, 31-57. https://doi.org/10.1016/0022-0965(90)90048-D
  31. Schauble, L. (1996). The development of scientific reasoning in knowledge-rich context. Developmental Psychology, 32, 102-119. https://doi.org/10.1037/0012-1649.32.1.102
  32. Schlesinger, M., & Langer, J. (1999). Infants' developing expectations of possible and impossible too-use events between ages 8 and 12 months. Developmental Science, 2, 195-205. https://doi.org/10.1111/1467-7687.00068
  33. Siegler, R. (1978). The origins of scientific reasoning. In R. S. Siegler (Ed.), Children's thinking : What develops? Hillsdale, NJ : Erlbaum.
  34. Sime, M. (1973). A child's eye view. New York: Harper.
  35. Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: A case study of the concepts of size, weight and density. Cognition, 21, 177-237. https://doi.org/10.1016/0010-0277(85)90025-3
  36. Smith, C., & Sera, M. (1992). A developmental analysis of the polar structure of dimensions. Cognitive Psychology, 24, 99-142. https://doi.org/10.1016/0010-0285(92)90004-L
  37. Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62, 753-766. https://doi.org/10.2307/1131175
  38. Spelkey, E. (1994). Initial Knowledge : Six suggestion. Cognition, 50, 431-445. https://doi.org/10.1016/0010-0277(94)90039-6
  39. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585. https://doi.org/10.1016/0010-0285(92)90018-W
  40. Wilkening, F., & Huber, S. (2002). Children's intuitive physics. In U. Goswami (Ed.), Blackwell handbook of child cognitive development(pp. 349-370). Oxford, UK: Blackwell.