Role of Intracellular $Ca^{2+}$ in the Lovastatin-Induced Stimulation of Melanin Synthesis in B16 Melanoma Cells

B16 흑색종세포에서 로바스타틴에 의한 멜라닌 합성 촉진효과에 미치는 세포내 칼슘의 역할

  • Received : 2013.01.22
  • Accepted : 2013.02.20
  • Published : 2013.02.28

Abstract

Although statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, have been shown to increase melanin synthesis, the exact mechanism of this action is not fully understood. In this study we investigated the possible involvement of intracellular $Ca^{2+}$ signal in the mechanism of stimulation of melanin synthesis induced by lovastatin in B16 cells. Lovastatin stimulated the production of melanin in a dose-dependent manner in the cells. Treatment with mevalonate, FPP and GGPP, precursors of cholesterol, did not significantly suppress the lovastatin-induced melanin production, suggesting that inhibition of cholesterol synthesis may not be involved in the mechanism of the action of lovastatin. In addition, lovastatin did not significantly alter the cAMP concentration and the stimulated production of melanin by lovastatin was not significantly changed by treatment with H89, a potent inhibitor of protein kinase A, which demonstrates that cAMP pathway may not be involved. However, lovastatin increased intracellular $Ca^{2+}$ concentration in a dose-related fashion. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the lovastatin-induced intracellular $Ca^{2+}$ increase and melanin synthesis, whereas intracellular $Ca^{2+}$ reduction with BAPTA/AM and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8) completely blunted these actions of lovastatin. Taken together, these results suggest that the intracellular $Ca^{2+}$ release may play an important role in the lovastatin-induced stimulation of melanin synthesis in B16 cells. These results further suggest that lovastatin may be useful for the treatment of hypopigmentation disorders, such as vitiligo.

Keywords

References

  1. Boissy, R. E. : Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 12 Suppl 2, 5 (2003). https://doi.org/10.1034/j.1600-0625.12.s2.1.x
  2. Gillbro, J. M. and Olsson, M. J. : The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches. Int. J. Cosmet. Sci. 33, 210 (2011). https://doi.org/10.1111/j.1468-2494.2010.00616.x
  3. Schallreuter, K. U., Kothari, S., Chavan, B. and Spencer, J. D. : Regulation of melanogenesis-controversies and new concepts. Exp. Dermatol. 17, 395 (2008). https://doi.org/10.1111/j.1600-0625.2007.00675.x
  4. Chang, T. S. : An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10, 2440 (2009). https://doi.org/10.3390/ijms10062440
  5. Sposito, A. C. and Chapman, M. J. : Statin therapy in acute coronary syndromes: mechanistic insight into clinical benefit. Arterioscler. Thromb. Vasc. Biol. 22, 1524 (2002). https://doi.org/10.1161/01.ATV.0000032033.39301.6A
  6. Muck, A. O., Seeger, H. and Wallwiener, D. : Inhibitory effect of statins on the proliferation of human breast cancer cells. Int. J. Clin. Pharmacol. Ther. 42, 695 (2004). https://doi.org/10.5414/CPP42695
  7. Hatzigeorgiou, C. and Jackson, J. L. : Hydroxymethylglutarylcoenzyme A reductase inhibitors and osteoporosis: a metaanalysis. Osteoporos. Int. 16, 990 (2005). https://doi.org/10.1007/s00198-004-1793-0
  8. Szczepanska-Szerej, A., Kurzepa, J., Wojczal, J. and Stelmasiak, Z. : Simvastatin-induced prevention of the increase in TNFlevel in the acute phase of ischemic stroke. Pharmacol. Rep. 59, 94 (2007).
  9. Saito, A., Saito, N., Mol, W., Furukawa, H., Tsutsumida, A., Oyama, A., Sekido, M., Sasaki, S. and Yamamoto, Y. : Simvastatin inhibits growth via apoptosis and the induction of cell cycle arrest in human melanoma cells. Melanoma Res. 18, 85 (2008). https://doi.org/10.1097/CMR.0b013e3282f60097
  10. Glynn, S. A., O'Sullivan, D., Eustace, A. J., Clynes, M. and O'Donovan, N. : The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells. BMC Cancer 8, 9 (2008). https://doi.org/10.1186/1471-2407-8-9
  11. Lee, Y. S. : Lovastatin induces apoptotic cell death by activation of intracellular $Ca^{2+}$ signal in HepG2 human hepatoma cells. J. Appl. Pharmacol. 15, 137 (2007). https://doi.org/10.4062/biomolther.2007.15.3.137
  12. Schallreuter, K. U., Hasse, S., Rokos, H., Chavan, B., Shalbaf, M., Spencer, J. D. and Wood, J. M. : Cholesterol regulates melanogenesis in human epidermal melanocytes and melanoma cells. Exp. Dermatol. 18, 680 (2009). https://doi.org/10.1111/j.1600-0625.2009.00850.x
  13. Galus, R., Niderla, J., Sladowski, D., Sajjad, E., Wlodarski, K. and Jozwiak, J. : Fluvastatin increases tyrosinase synthesis induced by a-melanocyte-stimulating hormone in B16F10 melanoma cells. Pharmacol. Rep. 62, 164 (2010). https://doi.org/10.1016/S1734-1140(10)70253-X
  14. Copaja, M., Venegas, D., Aranguiz, P., Canales, J., Vivar, R., Avalos, Y., Garcia, L., Chiong, M., Olmedo, I., Catalan, M., Leyton, L., Lavandero, S. and Diaz-Araya, G. : Simvastatin disrupts cytoskeleton and decreases cardiac fibroblast adhesion, migration and viability. Toxicology 294, 42 (2012). https://doi.org/10.1016/j.tox.2012.01.011
  15. Yoshioka, S., Terashita, T., Yoshizumi, H. and Shirasaka, N. : Inhibitory effects of whisky polyphenols on melanogenesis in mouse B16 melanoma cells. Biosci. Biotechnol. Biochem. 75, 2278 (2011). https://doi.org/10.1271/bbb.100514
  16. Huang, Y. C., Liu, K. C. and Chiou, Y. L. : Melanogenesis of murine melanoma cells induced by hesperetin, a Citrus hydrolysate-derived flavonoid. Food Chem. Toxicol. 50, 653 (2012). https://doi.org/10.1016/j.fct.2012.01.012
  17. Jin, S. H., Lee, Y. Y. and Kang, H. Y. : Methyl-$\beta$-cyclodextrin, a specific cholesterol-binding agent, inhibits melanogenesis in human melanocytes through activation of ERK. Arch. Dermatol. Res. 300, 451 (2008). https://doi.org/10.1007/s00403-008-0864-z
  18. Zhou, Q. and Liao, J. K. : Pleiotropic effects of statins. Basic research and clinical perspectives. Circ. J. 74, 818 (2010). https://doi.org/10.1253/circj.CJ-10-0110
  19. Busca, R. and Ballotti, R. : Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  20. Bentley, N. J., Eisen, T. and Goding, C.R. : Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14, 7996 (1994). https://doi.org/10.1128/MCB.14.12.7996
  21. Liang, C. H., Chou, T. H., Tseng, Y. P. and Ding, H. Y. : trans- Caffeic acid stearyl ester from Paeonia suffruticosa inhibits melanin synthesis by cAMP-mediating down-regulation of $\alpha$- melanocyte-stimulating hormone-stimulated melanogenesis signaling pathway in B16 cells. Biol. Pharm. Bull. 35, 2198 (2012). https://doi.org/10.1248/bpb.b12-00619
  22. deOliveira, A. R., Castrucci, A. M., Visconti, M. A. : Cellular signalling in vertebrate pigment cells. Braz. J. Med. Biol. Res. 29, 1743 (1996).
  23. Carsberg, C. J., Jones, K. T., Sharpe, G. R. and Friedmann, P. S. : Intracellular calcium modulates the responses of human melanocytes to melanogenic stimuli. J. Dermatol. Sci. 9, 157 (1995). https://doi.org/10.1016/0923-1811(94)00372-L
  24. Parker, C. and Sherbet, G. V. : The $Ca^{2+}$ channel blocker verapamil enhances melanogenesis without altering metastatic potential in the B16 murine melanoma. Melanoma Res. 3, 347 (1993). https://doi.org/10.1097/00008390-199310000-00008