References
-
Bae, D., S. Zhen, K. Seff. 1999. Structure of dehydrated
$Zn^{2+}$ -exchanged zeolite X. Overexchange, framework dealumination and reorganization, stoichiometric retention of monomeric tetrahedral aluminate. J. Phys. Chem. B. 103: 5631-5636. https://doi.org/10.1021/jp990854+ - Blower, C.J., T.D. Smith. 1993. The gas-phase decomposition of nitromethane over metal ion-exchanged sodium Y zeolite and sodium X zeolite. Zeolites. 13: 394-398. https://doi.org/10.1016/0144-2449(93)90156-W
- Brooks, C. 1990. Desulfurization over metal zeolites. Sep. Sci. Technol. 25: 1817-1828. https://doi.org/10.1080/01496399008050426
- Breck, D.W. 1974. Zeolite molecular sieves. John Wiley & Sons, New York. p. 93.
- Brownscombe, T.F. 1991. Basic alkaline earth metal-zeolite compositions. US Patent 5053372.
- Bruker-AXS (ver. 6.12), XPREP. 2001. Program for the automatic space group determination. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chu, P. 1978. Aromatization of ethane. US Patent 4120910.
- Gairbekov, T.M., M.I. Takaeva, A.K. Manovyan, I.L. Aleksandrova. 1989. Aromatization of gasoline on zinc-modified zeolite-containing catalysts. Chem. Technol. Fuels Oils. 25: 473-475. https://doi.org/10.1007/BF00726000
- Kumar, N., L.E. Lindfors, R. Byggningsbacka. 1996. Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane. Appl. Catal. A. 139: 189-199. https://doi.org/10.1016/0926-860X(95)00327-4
-
Lee, S.H., Y. Kim. 2000. Two crystal structures of dehydrated
$Zn^{2+}$ -exchanged zeolite X:$Zn_{46}Si_{100}Al_{92}O_{384}{{\cdot}}8ZnO$ and$Zn_{13}Tl_{66}Si_{100} Al_{92}O_{384}{{\cdot}}2ZnO$ . Bull. Korean Chem. Soc. 21: 180-186. -
Lim, W.T., S.M. Seo, G.H. Kim, H.S. Lee, K. Seff. 2007. Six single-crystal structures showing the dehydration, deamination, dealumination, and decomposition of
$NH_{4}^{+}$ -exchanged zeolite Y (FAU) with increasing evacuation temperature. Identification of a Lewis acid site. J. Phys. Chem. C. 111: 18294-18306. https://doi.org/10.1021/jp0742721 - Loewenstein, W. 1954. The distribution of aluminum in the tetrahedral of silicates and aluminates. Am. Mineral. 39: 92-96.
- Otwinowski, Z., W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Peterson, B.K. 1999. A simulated annealing method for determining atomic distributions from NMR data: silicon and aluminum in faujasite. J. Phys. Chem. B. 103: 3145-3150. https://doi.org/10.1021/jp984515c
- Rhee, K.H., F.R. Brown, D.H. Finseth, J.M. Stencel. 1983. Infrared studies on the acidity of metal impregnated ZSM-5. Zeolites. 3:344-347. https://doi.org/10.1016/0144-2449(83)90180-X
-
Seo, S.M., H.S. Kim, M. Park, W.T. Lim. 2011. Synthesis and structural refinement of fully dehydrated fully
$Zn^{2+}$ -exchanged zeolite Y (FAU),$Zn_{35.5}[Si_{121}Al_{71}O_{384}]$ -FAU. J. Porous Mater. 18:47-56. https://doi.org/10.1007/s10934-010-9355-7 - Sheldrick, G.M. 1997. SHELXL97, Program for the refinement of crystal structure. University of Gottingen, Germany.
- Van Bekkum, H., E.M. Flanigen, P.A. Jacobs, J.C. Jansen. 2001. Introduction to zeolite science and practice. Elsevior. p. 44.
- Ziolek, M., K. Nowinska, K. Lecksowska. 1992. Reactions of alcohols with hydrogen sulfide over zeolites: Part V. The role of Bronsted acid sites in thiols formation-A comparative study of zeolites and heteropoly acids. Zeolites. 12: 710-715. https://doi.org/10.1016/0144-2449(92)90120-E