DOI QR코드

DOI QR Code

Structural Characterization of the Intermetallic Phase EuZnxIn4-x (x ≈ 1.1-1.2). Zn and In Site-Preferences in the BaAl4 Structure-Type from Computational Analysis

  • You, Tae-Soo (Department of Chemistry and Biochemistry, University of Delaware) ;
  • Nam, Gnu (Department of Chemistry, Chungbuk National University) ;
  • Kim, Youngjo (Department of Chemistry, Chungbuk National University) ;
  • Darone, Gregory M. (Department of Chemistry and Biochemistry, University of Delaware) ;
  • Bobev, Svilen (Department of Chemistry and Biochemistry, University of Delaware)
  • Received : 2013.02.23
  • Accepted : 2013.03.06
  • Published : 2013.06.20

Abstract

The ternary phase $EuZn_xIn_{4-x}$ has been identified as the main product of reactions of Eu, Zn, and In by using the In-flux method and characterized by both powder and single-crystal X-ray diffraction. The structure belongs to the common $BaAl_4$-type (tetragonal space group I4/mmm, Pearson code tI10) with lattice parameters of a = 4.5610(9) ${\AA}$, c = 12.049(3) ${\AA}$ for composition $EuZn_{1.10(12)}In_{2.90}$ and a = 4.5463(3) ${\AA}$, c = 12.028(2) ${\AA}$ for composition $EuZn_{1.18(2)}In_{2.82}$, respectively. In this structure, the Eu atoms are situated at the center of 18-vertex Fedorov polyhedra made of Zn and In atoms, where the 4d site is preferentially occupied by In and the 4e site is occupied by randomly mixed Zn and In atoms. Theoretical investigations using tight-binding linear muffintin orbital (TB-LMTO) method provide rationale for the observed site preferences and suggest potentially wider homogeneity range than the experimentally established for $EuZn_xIn_{4-x}$ ($x{\approx}1.1$).

Keywords

References

  1. You, T.-S.; Grin, Y.; Miller, G. J. Inorg. Chem. 2007, 46, 8801. https://doi.org/10.1021/ic701111e
  2. He, H.; Stearrett, R. Nowak, E. R.; Bobev, S. Inorg. Chem. 2010, 49, 7935. https://doi.org/10.1021/ic100940b
  3. Wang, J.; Xia, S.-Q.; Tao, X.-T. Inorg. Chem. 2012, 51, 5771. https://doi.org/10.1021/ic300308w
  4. Westbrook, J. H.; Fleischer, R. L. Intermetallic Compounds: Principle and Practice, Wiley: New York, 1995.
  5. Misra, S.; Miller, G. J. J. Am. Chem. Soc. 2008, 130, 13900. https://doi.org/10.1021/ja802848r
  6. Klem, M. T.; Vaughey, J. T.; Harp, J. G.; Corbett, J. D. Inorg. Chem. 2001, 40, 7020. https://doi.org/10.1021/ic010804v
  7. Gout, D.; Barker, T. J.; Gourdon, O.; Miller, G. J. Chem. Mater. 2005, 17, 3661. https://doi.org/10.1021/cm050513a
  8. Miller, G. J.; Lee, C.-S.; Choe, W. In Highlights in Inorganic Chemistry; Meyer, G., Ed., Wiley-VCH: Heidelberg, Germany, 2002; p 21.
  9. You, T.-S.; Tobash, P. H.; Bobev, S. Inorg. Chem. 2010, 49, 1773. https://doi.org/10.1021/ic902144h
  10. Kanatzidis, M. G.; Pottgen, R.; Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996. https://doi.org/10.1002/anie.200462170
  11. Liu, S.; Corbett, J. D. Inorg. Chem. 2004, 43, 4988. https://doi.org/10.1021/ic040010r
  12. Bobev, S.; Bauer, E. D.; Thomson, J. D.; Sarrao, J. L. J. Magn. Magn. Mater. 2004, 277, 236. https://doi.org/10.1016/j.jmmm.2003.11.005
  13. Dai, J.-C.; Gupta, S.; Corbett, J. D. Inorg. Chem. 2011, 50(1), 238. https://doi.org/10.1021/ic1018828
  14. Yatsenko, S. P.; Semyannikov, A. A.; Shakarov, H. O.; Fedorova, E. G. J. Less-Common Met. 1983, 90, 95. https://doi.org/10.1016/0022-5088(83)90121-2
  15. Bruker, SMART, Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
  16. Bruker, SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
  17. Sheldrick, G. M. SADABS, University of Gottingen, Germany, 2003.
  18. Sheldrick, G. M. SHELXTL, University of Gottingen, Germany, 2001.
  19. Andersen, O. K. Phys. Rev. 1986, B 34, 2439.
  20. Jepsen, O.; Burkhardt, A.; Andersen, O. K. The TB-LMTO-ASA Program, version 4.7, Max-Planck-Institut fur Festkorperforschung, Stuttgart, Germany, 1999.
  21. Andersen, O. K.; Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571. https://doi.org/10.1103/PhysRevLett.53.2571
  22. Andersen, O. K.; Jepsen, O.; Glötzel, D.; Bassani, F.; Fumi, F.; Tosi, M., Eds.; Highlights of Condensed Matter Theory; North- Holland, Lambrecht, W. R. L., New York, 1985.
  23. Jepsen, O.; Anderson, O. K. Z. Phys. Rev. 1995, B 97, 35.
  24. Dronskowski, R.; Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617. https://doi.org/10.1021/j100135a014
  25. Blochl, P. E.; Jepsen, O.; Anderson, O. K. Phys. Rev. 1994, B 49, 16223.
  26. Miller, G. J. Eur. J. Inorg. Chem. 1998, 5, 523.
  27. Zheng, C.; Hoffmann, R. Z. Naturforsch. 1986, 41B, 292.
  28. Burdett, J. K.; Miller, G. J. Chem. Mater. 1990, 2, 12. https://doi.org/10.1021/cm00007a004
  29. Szytula, A.; Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, FL 1994.
  30. Fedorchuk, A.; Prots, Yu.; Grin, Yu. Z. Kristallogr. 2005, NCS 220, 317.
  31. Li, B.; Corbett, J. D. Inorg. Chem. 2007, 46, 8812. https://doi.org/10.1021/ic701127f
  32. You, T.-S.; Miller, G. J. Z. Anorg. Allg. Chem. 2008, 634, 845. https://doi.org/10.1002/zaac.200700580
  33. Pearson, W. B. J. Less-Common Met. 1985, L3, 109.
  34. Pearson, W. B. J. Solid State Chem. 1985, 56, 278. https://doi.org/10.1016/0022-4596(85)90177-X
  35. Seo, D.-K.; Corbett, J. D. J. Am. Chem. Soc. 2000, 122, 9621. https://doi.org/10.1021/ja001886+
  36. von Fedorov, J. S. Z. Kristallogr. 1904, 38, 321.
  37. Haussermann, U.; Amerioun, S.; Eriksson, L.; Lee, C.-S.; Miller, G. J. J. Am. Chem. Soc. 2002, 124, 4371. https://doi.org/10.1021/ja012392v
  38. Verbovytskyy, Yu.; Kaczorowski, D.; Goncalves, A. P. Intermetallics 2011, 19, 613. https://doi.org/10.1016/j.intermet.2010.12.011
  39. Ikromov, A. Z.; Ganiev, I. N.; Kinzhibalo, V. V. Dokl. Akad. Nauk Tadzh. SSR. 1990, 33, 173.
  40. Cordier, G.; Czech, E.; Schäfer, H.; Woll, P. J. Less-Common Met. 1985, 110, 327. https://doi.org/10.1016/0022-5088(85)90340-6
  41. Stel'makhovych, B.; Stel'makhovych, O.; Kuz'ma, Yu. J. Alloys Compd. 2005, 397, 115. https://doi.org/10.1016/j.jallcom.2005.01.033
  42. Dai, J.-C.; Corbett, J. D. Inorg. Chem. 2007, 46, 4592. https://doi.org/10.1021/ic070142v
  43. Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 403.
  44. Villars, P.; Calvert, L. D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed.; American Society of Metals: Park, OH, 1991.
  45. Wendorff, M.; Röhr, C. Z. Anorg. Allg. Chem. 2005, 631, 338. https://doi.org/10.1002/zaac.200400260
  46. Shannon, R. D. Acta Crystallogr. 1976, A32, 751.
  47. Tkachuk, A. V.; Mar, A. J. Solid State Chem. 2007, 180, 2298. https://doi.org/10.1016/j.jssc.2007.06.004
  48. Kittel, C. Introduction to Solid-State Physics, 7th ed.; John Wiley & Sons, Inc.: 1996.

Cited by

  1. Cationic Site-Preference in the Yb14-xCaxAlSb11 (4.81 ≤ x ≤ 10.57) Series: Theoretical and Experimental Studies vol.9, pp.7, 2016, https://doi.org/10.3390/ma9070553
  2. vol.46, pp.35, 2017, https://doi.org/10.1039/C7DT02410J
  3. ≤ 3) System: Experimental and Theoretical Studies vol.56, pp.12, 2017, https://doi.org/10.1021/acs.inorgchem.7b00617
  4. Site-Preference among Three Anions in the Quaternary BaAl4-Type Structure: Experimental and Computational Investigations for BaLi1.09(1)In0.91Ge2 vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3847
  5. First principles investigation on how site preference and entropy affect the stability of (EuxM1-x)2Ge2Pb (M = Ca, Sr, Ba) polar intermetallics vol.94, pp.4, 2016, https://doi.org/10.1139/cjc-2015-0374
  6. Effect of Rare-Earth Metals Substitution for Ca on the Crystal Structure and Thermoelectric Properties of the Ca11-xRExSb10-y System vol.19, pp.6, 2013, https://doi.org/10.1021/acs.cgd.9b00368