References
- You, T.-S.; Grin, Y.; Miller, G. J. Inorg. Chem. 2007, 46, 8801. https://doi.org/10.1021/ic701111e
- He, H.; Stearrett, R. Nowak, E. R.; Bobev, S. Inorg. Chem. 2010, 49, 7935. https://doi.org/10.1021/ic100940b
- Wang, J.; Xia, S.-Q.; Tao, X.-T. Inorg. Chem. 2012, 51, 5771. https://doi.org/10.1021/ic300308w
- Westbrook, J. H.; Fleischer, R. L. Intermetallic Compounds: Principle and Practice, Wiley: New York, 1995.
- Misra, S.; Miller, G. J. J. Am. Chem. Soc. 2008, 130, 13900. https://doi.org/10.1021/ja802848r
- Klem, M. T.; Vaughey, J. T.; Harp, J. G.; Corbett, J. D. Inorg. Chem. 2001, 40, 7020. https://doi.org/10.1021/ic010804v
- Gout, D.; Barker, T. J.; Gourdon, O.; Miller, G. J. Chem. Mater. 2005, 17, 3661. https://doi.org/10.1021/cm050513a
- Miller, G. J.; Lee, C.-S.; Choe, W. In Highlights in Inorganic Chemistry; Meyer, G., Ed., Wiley-VCH: Heidelberg, Germany, 2002; p 21.
- You, T.-S.; Tobash, P. H.; Bobev, S. Inorg. Chem. 2010, 49, 1773. https://doi.org/10.1021/ic902144h
- Kanatzidis, M. G.; Pottgen, R.; Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996. https://doi.org/10.1002/anie.200462170
- Liu, S.; Corbett, J. D. Inorg. Chem. 2004, 43, 4988. https://doi.org/10.1021/ic040010r
- Bobev, S.; Bauer, E. D.; Thomson, J. D.; Sarrao, J. L. J. Magn. Magn. Mater. 2004, 277, 236. https://doi.org/10.1016/j.jmmm.2003.11.005
- Dai, J.-C.; Gupta, S.; Corbett, J. D. Inorg. Chem. 2011, 50(1), 238. https://doi.org/10.1021/ic1018828
- Yatsenko, S. P.; Semyannikov, A. A.; Shakarov, H. O.; Fedorova, E. G. J. Less-Common Met. 1983, 90, 95. https://doi.org/10.1016/0022-5088(83)90121-2
- Bruker, SMART, Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
- Bruker, SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
- Sheldrick, G. M. SADABS, University of Gottingen, Germany, 2003.
- Sheldrick, G. M. SHELXTL, University of Gottingen, Germany, 2001.
- Andersen, O. K. Phys. Rev. 1986, B 34, 2439.
- Jepsen, O.; Burkhardt, A.; Andersen, O. K. The TB-LMTO-ASA Program, version 4.7, Max-Planck-Institut fur Festkorperforschung, Stuttgart, Germany, 1999.
- Andersen, O. K.; Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571. https://doi.org/10.1103/PhysRevLett.53.2571
- Andersen, O. K.; Jepsen, O.; Glötzel, D.; Bassani, F.; Fumi, F.; Tosi, M., Eds.; Highlights of Condensed Matter Theory; North- Holland, Lambrecht, W. R. L., New York, 1985.
- Jepsen, O.; Anderson, O. K. Z. Phys. Rev. 1995, B 97, 35.
- Dronskowski, R.; Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617. https://doi.org/10.1021/j100135a014
- Blochl, P. E.; Jepsen, O.; Anderson, O. K. Phys. Rev. 1994, B 49, 16223.
- Miller, G. J. Eur. J. Inorg. Chem. 1998, 5, 523.
- Zheng, C.; Hoffmann, R. Z. Naturforsch. 1986, 41B, 292.
- Burdett, J. K.; Miller, G. J. Chem. Mater. 1990, 2, 12. https://doi.org/10.1021/cm00007a004
- Szytula, A.; Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, FL 1994.
- Fedorchuk, A.; Prots, Yu.; Grin, Yu. Z. Kristallogr. 2005, NCS 220, 317.
- Li, B.; Corbett, J. D. Inorg. Chem. 2007, 46, 8812. https://doi.org/10.1021/ic701127f
- You, T.-S.; Miller, G. J. Z. Anorg. Allg. Chem. 2008, 634, 845. https://doi.org/10.1002/zaac.200700580
- Pearson, W. B. J. Less-Common Met. 1985, L3, 109.
- Pearson, W. B. J. Solid State Chem. 1985, 56, 278. https://doi.org/10.1016/0022-4596(85)90177-X
- Seo, D.-K.; Corbett, J. D. J. Am. Chem. Soc. 2000, 122, 9621. https://doi.org/10.1021/ja001886+
- von Fedorov, J. S. Z. Kristallogr. 1904, 38, 321.
- Haussermann, U.; Amerioun, S.; Eriksson, L.; Lee, C.-S.; Miller, G. J. J. Am. Chem. Soc. 2002, 124, 4371. https://doi.org/10.1021/ja012392v
- Verbovytskyy, Yu.; Kaczorowski, D.; Goncalves, A. P. Intermetallics 2011, 19, 613. https://doi.org/10.1016/j.intermet.2010.12.011
- Ikromov, A. Z.; Ganiev, I. N.; Kinzhibalo, V. V. Dokl. Akad. Nauk Tadzh. SSR. 1990, 33, 173.
- Cordier, G.; Czech, E.; Schäfer, H.; Woll, P. J. Less-Common Met. 1985, 110, 327. https://doi.org/10.1016/0022-5088(85)90340-6
- Stel'makhovych, B.; Stel'makhovych, O.; Kuz'ma, Yu. J. Alloys Compd. 2005, 397, 115. https://doi.org/10.1016/j.jallcom.2005.01.033
- Dai, J.-C.; Corbett, J. D. Inorg. Chem. 2007, 46, 4592. https://doi.org/10.1021/ic070142v
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 403.
- Villars, P.; Calvert, L. D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed.; American Society of Metals: Park, OH, 1991.
- Wendorff, M.; Röhr, C. Z. Anorg. Allg. Chem. 2005, 631, 338. https://doi.org/10.1002/zaac.200400260
- Shannon, R. D. Acta Crystallogr. 1976, A32, 751.
- Tkachuk, A. V.; Mar, A. J. Solid State Chem. 2007, 180, 2298. https://doi.org/10.1016/j.jssc.2007.06.004
- Kittel, C. Introduction to Solid-State Physics, 7th ed.; John Wiley & Sons, Inc.: 1996.
Cited by
- Cationic Site-Preference in the Yb14-xCaxAlSb11 (4.81 ≤ x ≤ 10.57) Series: Theoretical and Experimental Studies vol.9, pp.7, 2016, https://doi.org/10.3390/ma9070553
- vol.46, pp.35, 2017, https://doi.org/10.1039/C7DT02410J
- ≤ 3) System: Experimental and Theoretical Studies vol.56, pp.12, 2017, https://doi.org/10.1021/acs.inorgchem.7b00617
- Site-Preference among Three Anions in the Quaternary BaAl4-Type Structure: Experimental and Computational Investigations for BaLi1.09(1)In0.91Ge2 vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3847
- First principles investigation on how site preference and entropy affect the stability of (EuxM1-x)2Ge2Pb (M = Ca, Sr, Ba) polar intermetallics vol.94, pp.4, 2016, https://doi.org/10.1139/cjc-2015-0374
- Effect of Rare-Earth Metals Substitution for Ca on the Crystal Structure and Thermoelectric Properties of the Ca11-xRExSb10-y System vol.19, pp.6, 2013, https://doi.org/10.1021/acs.cgd.9b00368