References
- Albuquerque, M. P., I. A. Esquef and A. R. G. Mello. 2004. Image thresholding using Tsaillis entropy. Pattern Recognition letters 25(9):1059-1065. https://doi.org/10.1016/j.patrec.2004.03.003
- Barron, U. G and F. Butler. 2006. A comparison of seven thresholding techniques with the k-means clustering algorithm for measurement of bread-crumb features by digital image analysis. Journal of Food Engineering 74:268-278. https://doi.org/10.1016/j.jfoodeng.2005.03.007
- Brink, A. D and N. E. Pendock. 1996. Minimum cross-entropy threshold selection. Pattern Recognition 29(1):179-188. https://doi.org/10.1016/0031-3203(95)00066-6
- Cao, L., P. Bao and Z. Shi. 2008. The strongest schema learning GA and its application to multilevel thresholding. Image and Vision Computing 26:716-724. https://doi.org/10.1016/j.imavis.2007.08.007
- Chengxin, Y., N. Sang and T. Zhang. 2003. Local entropybased transition region extraction and thresholding. Pattern Recognition letters 24:2935-2941. https://doi.org/10.1016/S0167-8655(03)00154-5
- Cheng, H. D., J. R. Chen and J. G. Li. 1998. Threshold selection based on fuzzy c-Partition entropy approach. Pattern Recognition 31(7):857-870. https://doi.org/10.1016/S0031-3203(97)00113-1
- Das, S., A. Abraham and S. K. Sarkar. 2006. A Hybrid Rough Set-Particle Swarm Algorithm for Image Pixel Classification. Hybrid Intelligent Systems, HIS '06. Sixth International Conference on.
- Fan, S. K. S and Y. Lin. 2007. A multi-level thresholding approach using a hybrid optimal estimation algorithm. Pattern Recognition Letters 28:662-669. https://doi.org/10.1016/j.patrec.2006.11.005
- Hammouche, K., M. Diaf and P. Siarry. 2008. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Computer Vision and Image Understanding 109:163-175. https://doi.org/10.1016/j.cviu.2007.09.001
- Kapur, J. N., P. K. Sahoo and A. K. C. Wong. 1985. A new method for gray level picture thresholding using the entropy of the histogram. Computing Vision Graphics Image Process 29(3):273-285. https://doi.org/10.1016/0734-189X(85)90125-2
- Li, L and D. Li. 2008. Fuzzy entropy image segmentation based on particle swarm optimization. Progress in Natural Science 18:1167-1171. https://doi.org/10.1016/j.pnsc.2008.03.020
- Lievers, W. B and A. K. Pilkey. 2004. An evaluation of global thresholding techniques for the automatic image segmentation of automotive aluminum sheet alloys. Materials Science and Engineering A 381:134-142. https://doi.org/10.1016/j.msea.2004.04.002
- Maitra, M and A. Chatterjee. 2008. A hybrid cooperativecomprehensive learning based PSO algorithm for image segmentation using multilevel thresholding, Expert Systems with Applications 34(2):1341-1350. https://doi.org/10.1016/j.eswa.2007.01.002
- Mishra, S. 2005. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation, IEEE Transactions on Evolutionary Computation 9(1):61-73. https://doi.org/10.1109/TEVC.2004.840144
- Niknam, T and B. Amiri. 2010. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Applied Soft Computing 10:183-197. https://doi.org/10.1016/j.asoc.2009.07.001
- Otsu, N. 1997. A threshold selection method from grey level histogram. IEEE Transactions on Systems, Man, and Cybernetics. SMC-9(1):62-66.
- Passino, K. M. 2002. Biomimicry of bacterial foraging for distributed optimization and control. Control Systems Magazine. IEEE 22(3):52-67. https://doi.org/10.1109/MCS.2002.1004010
- Sahoo, P., C. Wilkins and J. Yeager. 1997. Threshold seclection using Renyi's entropy. Pattern Recognition 30(1): 71-84. https://doi.org/10.1016/S0031-3203(96)00065-9
- Scheunders, P. 1997. A genetic c-means clustering algorithm applied to color image quantization. Pattern Recognition 30(6):859-866. https://doi.org/10.1016/S0031-3203(96)00131-8
- Tao, W. B., J. W. Tian and J. Liu. 2003. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognition Letters 24:3069-3078. https://doi.org/10.1016/S0167-8655(03)00166-1
- Yin, P. Y. 1999. A fast scheme for optimal thresholding using genetic algorithms. Signal Processing 72:85-95. https://doi.org/10.1016/S0165-1684(98)00167-4
- Zahara, E., S. K. S. Fan and D. M. Tsai. 2005. Optimal multi-thresholding using a hybrid optimization approach, Pattern Recognition Letters 26(8):1082-1095. https://doi.org/10.1016/j.patrec.2004.10.003
Cited by
- Noninvasive Glucose Monitoring with a Contact Lens and Smartphone vol.18, pp.10, 2018, https://doi.org/10.3390/s18103208