DOI QR코드

DOI QR Code

폴리스티렌-클레이 나노 복합재료의 합성 및 차단 특성에 관한 연구

Synthesis of polystyrene-clay nanocomposites and investigation of their barrier property

  • Dhungana, Biraj (Advanced Materials Science and Engineering, Kongju National University) ;
  • Son, Younggon (Advanced Materials Science and Engineering, Kongju National University)
  • 투고 : 2013.04.10
  • 심사 : 2013.05.09
  • 발행 : 2013.05.31

초록

고성능 고분자/클레이 나노 복합재료의 제조 과정에는 친수성을 보이는 클레이 원료 물질인 $Na^+$-MMT (sodium monmorilonite)를 친유성을 갖도록 유기화된 계면활성제로처리하여 개질하는 과정이 필수적이다. 이를 위하여 이 연구에서는 VDAC (vinylbenzyldimethyl-dodecylammonium chloride)를 간단한 화합물로부터 합성하였고 이를 이용하여 양이온 교환반응에 의하여 $Na^+$-MMT를 개질한 후 $VDA^+$-MMT를 제조하였다. 이를 스티렌과 혼합하여 in-situ 중합에 의하여 나노복합재료를 제조하였고 클레이의 분산성 및 차단특성을 연구하였다. 연구 결과 PS/$VDA^+$-MMT 나노 복합재료의 경우 클레이의 분산이 $Na^+$-MMT와 비교할 때 현저히 증가함을 확인하였고 이로 인해 유기 용매에 대한 차단 특성이 매우 우수함을 확인하였다.

In prepaparation of the high performance polymer/clay nanocomposite, it is essential to modify the hydrophillic $Na^+$-MMT to hydrophobic alkyl ammonium-MMT via organic surfactant. The organic surfactant, VDAC (vinylbenzyldimethyl-dodecylammonium chloride) was synthesized from two primary chemicals and $VDA^+$-MMT was prepared from $Na^+$-MMT through a cation exchange reaction between $Na^+$ and $VDA^+$ (vinylbenzyldimethyl-$dodecylammonium^+$) cation. $VDA^+$-MMT was then dispersed in styrene and polystyrene/$VDA^+$-MMT nanocomposite was fabricated by in-situ polymerization reaction. The clay dispersion and barrier property of the nanocomposite were investigated. From the investigations, it was confirmed that dispersion of the $VDA^+$-MMT was enhanced compared with that of $Na^+$-MMT and as a consequency of better dispersion, barrier property of organic solvent was improved in a great extent.

키워드

참고문헌

  1. B. M. Novak. "Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers ", Adv. Mater., Vol. 5, pp. 422-433, 1993. DOI: http://dx.doi.org/10.1002/adma.19930050603
  2. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, O. Kamigaito, "Synthesis of nylon 6-clay hybrid", J Mater Res Vol 8, pp.1179 - 1184, 1993. DOI: http://dx.doi.org/10.1557/JMR.1993.1179
  3. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, O. Kamigaito, "Mechanical properties of nylon 6-clay hybrid", J Mater Res, Vol 8, 1185-1189, 1993. DOI: http://dx.doi.org/10.1557/JMR.1993.1185
  4. T. J. Pinnavaia, "Intercalated Clay Catalysts", Science, Vol 220(4595), pp. 365-371, 1983. DOI: http://dx.doi.org/10.1126/science.220.4595.365
  5. R. A. Vaia, E. P. Giannelis, "Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment," Macromolecules, Vol. 30(25), pp. 8000-8009, 1997. DOI: http://dx.doi.org/10.1021/ma9514333
  6. C. M. Koo, S. M. Kim, I. J. Chung, "Study on Morphology Evolution, Orientational Behavior, and Anisotropic Phase Formation of Highly Filled Polymer-Layered Silicate Nanocomposites," Macromolecules, Vol. 36(8), pp. 2748-2757, 2003. DOI: http://dx.doi.org/10.1021/ma021377n
  7. C. Zeng, L. J. Lee, "Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared by in-Situ Polymerization", Macromolecules, Vol. 34, pp. 4098-4103, 2001. DOI: http://dx.doi.org/10.1021/ma010061x
  8. M. Okamoto, S. Morita, H. Taguchi1, Y. H. Kim, T. Kotaka, H. Tateyama, "Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization", Polymer, Vol. 41, pp 3887-3890, 2001. DOI: http://dx.doi.org/10.1016/S0032-3861(99)00655-2
  9. P. Meneghetti, S. Qutubuddin, "Synthesis, thermal properties and applications of polymer-clay nanocomposites", Thermochimica Acta, Vol. 442, pp. 74-77, 2006. DOI: http://dx.doi.org/10.1016/j.tca.2006.01.017
  10. Y. Zhong, Z. Zhu, and S.-Q. Wang, "Synthesis and rheological properties of polystyrene/layered silicate nanocomposite", Polymer, Vol. 46, pp. 3006-3013, 2005. DOI: http://dx.doi.org/10.1016/j.polymer.2005.02.014
  11. X Fu, S Qutubuddin, "Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene", Polymer, Vol. 42, pp. 807-813, 2001. DOI: http://dx.doi.org/10.1016/S0032-3861(00)00385-2
  12. J. Russell, A. Fraser, "Infrared methods in clay mineralogy," in Spectroscopic and Chemical Determinative Methods, M. J. Wilson, editor, Chapman and Hall, London, pp. 11-67, 1994. DOI: http://dx.doi.org/10.1007/978-94-011-0727-3_2
  13. J. Madejova, P. Komadel, "Baseline studies of the clay minerals society source clays: infrared methods," Clays and Clay Minerals, vol. 49, pp. 410-432, 2001. DOI: http://dx.doi.org/10.1346/CCMN.2001.0490508
  14. J. Madejova, M. Janek, P. Komadel, H. J. Herbert, H. C. Moog, "FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems," Applied Clay Science, Vol. 20, pp. 255-271, 2002. DOI: http://dx.doi.org/10.1016/S0169-1317(01)00067-9