DOI QR코드

DOI QR Code

Development and Radiation Shield effects of Dose Reduction Fiber for Scatter ray in CT Exams

피폭선량저감 섬유의 개발과 CT 검사시 산란선 차폐 효과

  • Received : 2012.12.11
  • Accepted : 2013.04.11
  • Published : 2013.04.30

Abstract

In this study, we developed and characterized the shielding properties of dose reduction fiber (DRF, Buffalo Co.) sheet during brain and chest CT examinations. The DRF sheet was composed of $1{\sim}500{\mu}m$ oxide Bismuth ($Bi_2O_3$) and 5 ~ 50 nm nano-barium sulfate ($BaSO_4$). Phantom and clinical studies were performed for characterization of the DRF shielding properties. In clinical study, we measured doses of eye, chest, abdomen and reproductive system of 60 patients in 3 hospitals during brain and chest CT examinations. We could determined the shielding effect of the DRF by comparing the doses when we used the DRF sheet or not. When we used the sheet during CT examination, the scattered dose were reduced about 20~50%. So, we suggest that the fiber should be used in radiological examinations for reducing patients doses.

본 연구에서는 평균 입자의 크기가 $1{\sim}500{\mu}m$인 산화비스무스($Bi_2O_3$)와 평균 입자의 크기가 5 ~ 50 nm인 나노 황산바륨($BaSO_4$)을 사용하여 선량저감섬유(DRF; dose reduction fiber, (주)버팔로)를 개발하였다. 개발된 섬유를 시트 형태로 제작한 후 CT 검사시 발생한 산란선에 대한 차폐 특성을 조사하였다. 특성평가는 전리조와 인체 펜텀을 이용한 팬텀실험과 유리선량계를 이용한 임상실험을 병행하여 진행하였다. 임상실험에서는 3개 종합병원 60명의 환자에 대한 흉부 및 두부 CT 검사시 선량저감섬유를 사용하였을 때와 사용하지 않았을 때 안구, 흉부, 복부 및 생식선의 피부 및 심부 선량을 비교하여 차폐효과를 평가하였다. 본 연구를 통하여 개발된 선량저감섬유는 산란선에 의한 두부 및 흉부에 불필요한 피폭선량을 20~50% 정도 저감할 수 있는 것으로 확인되었으며, CT 검사시 본 섬유를 활용한다면 환자 피폭선량을 포함한 국민 총피폭선량 경감에 기여할 수 있을 것이다.

Keywords

References

  1. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection, Pub. 103, 2007.
  2. ICRP, Radiological Protection and Safety in Medicine, (73), Pergamon Press, Oxford, 1996.
  3. ICRP, Recommendations of International Commission on Radiological Pretection, (60), Pergamon Press, Oxford, 1991.
  4. ICRP, Protection of the patients in Diagnostic Radiology, Pub.34, Pergamon Press, Oxford, 1982.
  5. Chang Shu Chen, Radiation shield sheet, US 2004/0245484 A1, 2004.
  6. Igor Sepanovich, X-ray absorbing material and variants, 01020874, 2005.
  7. S.C. Seo, A method manufacture shield clothing radiation, Korea Intellectual Property Office, Patient No. 1019940001934, 1998.
  8. J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest, National Institute of Standards and Technology, http://www.nist.gov/pml/data/xraycoef/index.cfm, 2011.
  9. J. S. Kwak, Y. J. Kim., Manufacturing Method Of Fabric For Shielding Radiation, Fabric For Shielding Radiation And The Clothes Including The Same, Korea Intellectual Property Office, Patient No. 1010893230000, 2011.
  10. Korea Food and Drug Adminstration, Guideline of Patients Eose in Chest X-ray Examination, Series of Radiation Safety (17), pp.20-23, 2008.
  11. Korea Food and Drug Adminstration, Guideline of Patients Eose in CT Examination, Series of Radiation Safety (19), pp.8-9, 2009.
  12. IAEA, International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series, No.115, 1996.

Cited by

  1. A study of beam hardening effect reduction occur in brain CT vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8479
  2. Evaluation of radiation dose reduction during CT scans by using bismuth oxide and nano-barium sulfate shields vol.67, pp.1, 2015, https://doi.org/10.3938/jkps.67.1
  3. Development of radiation shield providing medical support for radioactive disaster in computer awareness analysis convergence-based pp.1573-7543, 2018, https://doi.org/10.1007/s10586-017-0750-6