DOI QR코드

DOI QR Code

Preparation of Silicon Tetrachloride by Chlorination of Silicon

실리콘의 염소화반응에 의한 사염화규소 제조

  • Received : 2013.03.08
  • Accepted : 2013.03.31
  • Published : 2013.06.01

Abstract

The chlorination of a metallurgical-grade silicon was carried out in a fluidized bed reactor, 25 mm in diameter. The flow rate of the chlorine admitted into the reactor was 0.2 L/min and that of the carrier nitrogen was 0.8~1.0 L/min. The reactor temperature was maintained at $450^{\circ}C$ and the temperature of the coolant at the $SiCl_4$ condenser was at $-5^{\circ}C$. The $SiCl_4$ yield increased with increasing the mole fraction of chlorine in the feed gas, exhibiting 28% at the mole fraction of 0.2. Further increase of the chlorine mole fraction was not attempted in a worry that the reactor might be failed due to the high exothermicity of the reaction. The production of $SiCl_4$ from silicon by fluidized bed chlorination was demonstrated on a laboratory scale, which is a stepping stone for future studies under more severe conditions toward industrial application.

직경 25 mm의 파이렉스 튜브 내에서 실리콘의 유동층 염소화 반응이 수행되었다. 반응기에 공급되는 질소 유량 0.8~1.0 L/min, 염소 유량 0.2 L/min, 반응온도 $450^{\circ}C$, $SiCl_4$ 응축기의 냉매온도는 $-5^{\circ}C$로 설정하였다. 반응기에 도입되는 가스 내 염소의 몰분율이 증가하면 $SiCl_4$의 수율이 증가하였다. 반응가스 중 염소의 몰분율 0.2의 조건에서 $SiCl_4$의 수율은 28% 이었다. 염소의 몰분율 증가는 반응열 상승에 의해 반응온도 상승을 가져옴으로써 안전을 고려하여 염소의 몰분율을 0.2 이상으로 올리지 못했다. 실리콘의 유동층 염소화 반응에 의한 사염화실리콘의 제조 가능성이 입증되었으며, 향후 보다 가혹한 조건에서의 실용화 연구를 위한 기초로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Collins, W., "Silicon Halides," in: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edition, Vol. 20, John Wiley & Sons, Inc., 1982.
  2. Park, H. K. and Park, K. Y., "Vapor-phase Synthesis of Uniform Silica Spheres through Two-Stage Hydrolysis of $SiCl_{4}$," Mater. Res. Bull., 43(11), 2833-2839(2008). https://doi.org/10.1016/j.materresbull.2008.01.003
  3. Silenko, P. M., Shlapak, A. N., Bykov, A. I., Danilenko, N. I., Klochkov, L. A. and Ragulya, A. V., "Silicon Nitride Nanofibers Produced by the Pyrolysis of $SiCl_{4}$ in $H_{2}$ and $N_{2}$ Media," Theor. Exp. Chem., 43(2), 85-89(2007). https://doi.org/10.1007/s11237-007-0011-5
  4. Falcone, J. S., "Silicon Compounds," in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed. by Grayson M., John Wiley & Sons, Inc., 1982.
  5. Seo, E. S. M., Brocchi, E. A., Carvalho, R. J., Soares, E. P. and Andreoli, M., "A Mathematical Model for Silicon Chlorination," J. Mater. Process. Technol., 141, 370-378(2003). https://doi.org/10.1016/S0924-0136(03)00290-5
  6. HSC Chemistry 5.1, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Outo Kumpu, 2002.
  7. Grace, J. R., "Fluidized-Bed Hydrodynamics," in Handbook of Multiphase Systems by Hetsroni G., Washington, Hemisphere Publishing Corporation, 1982.
  8. Crookston, R. B. and Canjar, L. N., "Vapor Pressures of Silicon Tetrachloride-Titanium Tetrachloride Mixtures," J. Chem. Eng. Data, 8(4), 544-547(1963). https://doi.org/10.1021/je60019a022
  9. Kim, H. Y., "Preparation of Polysilicon for Solar Cells," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46, 37-49(2008).
  10. Jain, M. P., Sathiyamoorthy, D. and Govardhana Rao, V., "Studies of Hydrochlorination of Silicon in a Fluidized Bed Reactor," Indian Chem. Eng., 51, 272-280(2010). https://doi.org/10.1080/00194500903444417

Cited by

  1. 사염화규소 누출사고지점 주변 식물에 대한 노출지표 평가 vol.36, pp.4, 2013, https://doi.org/10.5338/kjea.2017.36.4.37