DOI QR코드

DOI QR Code

Oxidative Dehydrogenation of n-Butane over Cr Catalysts Supported on Alumina and SBA-15

Cr이 담지 된 알루미나, SBA-15 촉매에서 n-부탄의 산화적 탈수소화 반응

  • Shin, Jin Hyun (Department of Chemical and Biochemical Engineering, Konyang University) ;
  • Shin, Jin Ho (Department of Chemical and Biochemical Engineering, Konyang University) ;
  • Cho, Deug Hee (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Ko, Moon Kyu (Department of Chemical and Biochemical Engineering, Konyang University)
  • 신진현 (건양대학교 화공생명학과) ;
  • 신진호 (건양대학교 화공생명학과) ;
  • 조득희 (한국화학연구원 신화학연구단) ;
  • 고문규 (건양대학교 화공생명학과)
  • Received : 2013.01.22
  • Accepted : 2013.02.05
  • Published : 2013.06.01

Abstract

Oxidative dehydrogenation of n-butane over mesoporous Cr catalysts were studied. Catalysts were prepared by Cr impregnated method over Ti or Zr dispersed mesoporous support such as SBA-15, ${\gamma}$-alumina and characterized by XRD, SEM, TEM, FT-IR UV-Vis and ICP-AES. The effect of high surface area was not noticed appreciably in terms of conversion, but for Cr catalysts with Ti and Zr-incorporated on SBA-15 and ${\gamma}$-alumina. showed high selectivity of trans-2-butene.

n-부탄의 산화적 탈수소화 반응을 위한 Cr 촉매가 연구되었다. 촉매의 제조는 메조포러스 물질인 SBA-15와 ${\gamma}$-alumina 지지체로 사용되었고 지지체의 표면 위에 Cr 산화물을 담지시키는 방법은 함침법이 사용되었고, Cr의 분산성을 높이기 위하여 구조 증진제로 Ti, Zr를 분산시킨 위에 Cr을 담지하여 특성분석 하였다. 촉매특성은 XRD, FT-IR, UV-Vis, ICPAES, SEM, TEM 등을 이용하여 분석하였다. Cr 촉매에서 넓은 표면적을 가진 지지체의 효과는 전환율에 큰 차이를 보이지 않고 Ti, Zr이 증진제로 사용된 촉매의 경우 trans-2-부텐의 선택도가 높아짐을 보였다.

Keywords

References

  1. H. Kitagawa, Y. Sendoda and Y. Ono, "Transformation of Propane Into Aromatic Hydrocarbons over ZSM-5 Zeolites," J. Catal, 101(1), 12-18(1986). https://doi.org/10.1016/0021-9517(86)90223-X
  2. J. S. Kim, G. Seo, J. H. Kim, and N. K. Park, "Catalytic Conversions of Lower Hydrocarbons to Aromatic Compounds over Gallozeolites," J. Korean Chem. Eng. Res., 27, 260-267(1989).
  3. P. Meriaudeau and C. Naccache, "The Role of $Ga_{2}O_{3}$ and Proton Acidity on the Dehydrogenating Activity of $Ga_{2}O_{3}$-HZSM-5 Catalysts: Evidence of a Bifunctional Mechanism," J. Mol. Catal., 59, L31-L36(1990). https://doi.org/10.1016/0304-5102(90)85100-V
  4. X. Li, W. Ji, J, Zhao, Z. Zhang, and C. Au, "n-Butane Oxidation over VPO Catalyst Supported on SBA-15," J. Catal., 238, 232-241(2006). https://doi.org/10.1016/j.jcat.2005.12.012
  5. P. A. Batist, J. F. H. Bouwens, and G. C. A. Schult, "Bismuth Molybdate Catalysts. Preparation, Characterization and Activity of Different Compounds in the Bi/Mo/O System," J. Catal., 1972, 25, 1 (1972). https://doi.org/10.1016/0021-9517(72)90196-0
  6. S. Wang, K. Murata, T. Hayakawa, S. Hamakawa, and K. Suzuki, "Oxidative Dehydro-Isomerization of n-Butane over Anion-promoted $Cr_{2}O_{3}/ZrO_{2}$Catalyst," Energy Fuels, 15, 384-388(2001). https://doi.org/10.1021/ef000149w
  7. D. Y Zao, J. I. Feng, Q. S. Huo, Z. N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Science 279, 548(1998). https://doi.org/10.1126/science.279.5350.548
  8. M. Kim, J. Park, C. Shin, S. Han, and G. Seo, "Dispersion Improvement of Platinum Catalysts Supported on Silica, Silica-Aluminar and Aluminar by Titania Incorporation and pH Adjustment," Catal Lett, 133, 288-297(2009). https://doi.org/10.1007/s10562-009-0188-4
  9. S. J. Park, M. H. Cho, S. Kim, and S. H. Kwon, "Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal," J. Korean Ind. Eng. Chem., 16(6), 737-741(2005).
  10. P. Kustrowski, L. Chmielarz, R. Dzieembaj, P. Cool, and E. F. Vansant, "Dehydrogenation of Ethylbenzene with Nitrous Oxide in the Presence of Mesoporous Silica Materials Modified with Transition Metal Oxides," J. Phys. Chem. A, 109, 330-336(2005). https://doi.org/10.1021/jp0455881