References
- Hayama, S., Skipper, N. T., Wasse, J. C. and Thompson, H., "X-ray Diffraction Studies of Solutions of Lithium in Ammonia: The Structure of the Metal-nonmetal Transition," J. Chem. Phys., 116, 2991-2996(2002). https://doi.org/10.1063/1.1436120
- Wasse, J. C., Hayama, S., Masmanidis, S., Stebbings, S. L. and Skipper, N. T., "The Structure of Lithium-ammonia and Sodiumammonia Solutions by Neutron Diffraction," J. Chem. Phys., 118, 7486-7494(2003). https://doi.org/10.1063/1.1563594
-
Salter, T. E., Mikhailov, V. A., Evans, C. J. and Ellis, A. M., "Infrared Spectroscopy of
$Li(NH_{3})_{n}$ Clusters for n=4-7," J. Chem. Phys., 125, 034302(1-10)(2006). https://doi.org/10.1063/1.2208349 -
Salter, T. E. and Ellis, A. M. "Structures of Small
$Li(NH_{3})_{n}$ and$Li(NH_{3})_{n}^{+}$ Clusters (n=1-5): Evidence from Combined Photoionization Efficiency Measurements and ab Initio Calculations," J. Phys. Chem. A, 111, 4922-4926(2007). https://doi.org/10.1021/jp071622a - Chuev, G. N., Quémerais, P. and Crain, J., "Nature of the Metalnonmetal Transition in Metal-ammonia Solutions. I. Solvated Electrons at Low Metal Concentrations," J. Chem. Phys., 127, 244501(1-16)(2007). https://doi.org/10.1063/1.2812244
- Lee, J. M. and Jhon, M. S., "Application of Liquid Theory to Sodium-Ammonia Solution," Bull. Kor. Chem. Soc., 2, 90-96(1981).
- Schulz, C. P., Gerber, A., Nitsch, C. and Hertel, I. V., "Spectroscopy of free Sodium-ammonia Clusters," Z. Phys. D., 20, 65-67(1991). https://doi.org/10.1007/BF01543939
- Almeida, T. S. and Cabral, B. J. C., "Ab Initio Approach to the Electronic Properties of Sodium-ammonia Clusters: Comparison with Ammonia Clusters," J. Chem. Phys., 132, 094307(1-10)(2010). https://doi.org/10.1063/1.3329371
-
Dewald, J. F. and Lepoutre, G., "The Thermoelectric Properties of Metal-Ammonia Solutions. I. The Thermoelectric Power of Sodium and Potassium at
$-33^{\circ}$ ," J. Am. Chem. Soc., 76, 3369-3373 (1954). https://doi.org/10.1021/ja01642a005 - Arendt, P., "Dissipationless Electric Current Flow Through Decomposing Liquid Metal-ammonia Solutions Between Copper Electrodes," Electrochim. Acta, 30, 709-718(1985). https://doi.org/10.1016/0013-4686(85)80117-1
- Arendt, P., "Circulating Currents in Tubes of Decomposing Liquid Lithium-ammonia Solutions in the High-conducting State," Electrochim. Acta, 31, 445-449(1986). https://doi.org/10.1016/0013-4686(86)80107-4
-
Arendt, P., "The Xerogel Made from Decomposing Liquid Metal-ammonia Solutions-A Solid Material Which Carries Current Densities of
$10^{5}$ A$cm^{2}$ at Room Temperature," J. Phys. Chem. Solids, 49, 511-517(1988). https://doi.org/10.1016/0022-3697(88)90062-5 - Arendt, P., "Change in Electrical Conductivity of a Gel Made From Decomposing Liquid Metal-ammonia Solutions as the Gel Is Dried to a Xerogel," Solid State Commun., 74, 559-565 (1990). https://doi.org/10.1016/0038-1098(90)90676-3
- Jeon, J. and Kim, J., "Thermoelectric Experiment of a Fluid Lithium-Ammonia Solution in a U-Shaped Pyrex Tube with Highly Pure Vacuum State," Adv. Sci. Lett., 8, 550-554(2012). https://doi.org/10.1166/asl.2012.2440
-
Park, H. Kim, J. and Jeon, J., "Experimental Study of Thermoelectric Material Using Lithium-Ammonia
$(Li(NH_{3})_{n})$ Solution," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 263-270(2011). https://doi.org/10.9713/kcer.2011.49.2.263 - Yurtseven, H. and Caglar, O., "A Linear Variation of the Thermal Expansivity with the Isothermal Compressibility for Ammonia Solid III Near the Melting Point," Korean J. Chem. Eng., 27, 249-252(2010). https://doi.org/10.2478/s11814-009-0335-z