DOI QR코드

DOI QR Code

Catalytic Performance of Ionic Liquids in the Synthesis of Glycerol Carbonate from Glycerol and Urea

글리세롤과 요소로부터 글리세롤카보네이트 합성에서 이온성액체의 촉매 특성

  • Kim, Dong-Woo (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Park, Kyung-Ah (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Min-Ji (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Park, Dae-Won (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 김동우 (부산대학교 화공생명공학부) ;
  • 박경아 (부산대학교 화공생명공학부) ;
  • 김민지 (부산대학교 화공생명공학부) ;
  • 박대원 (부산대학교 화공생명공학부)
  • Received : 2013.03.11
  • Accepted : 2013.04.20
  • Published : 2013.06.01

Abstract

The preparation of glycerol carbonate (GC) from urea through carbonylation with renewable glycerol was investigated by using ionic liquid catalysts. It was found that quaternary ammonium salt and imidazolium salt ionic liquids with a shorter alkyl chain length and higher nucleophilic anion showed better catalytic performance. The effects of reaction temperature, reaction time and degree of vacuum on the reactivity of TBAC catalyst ware discussed. Zinc chloride ($ZnCl_2$) was used as co-catalyst with the ionic liquid catalyst. The mixed catalyst showed a synergy effect on the glycerol conversion and GC yield probably due to the acid-base properties of the catalysts.

글리세롤과 요소의 카르보닐화 반응에 의한 글리세롤카보네이트(GC)의 제조반응에 대하여 이온성 액체 촉매의 특성을 조사한 결과 사용된 4급암모늄염 촉매와 이미다졸염 촉매의 알킬기의 길이가 짧을수록, 할로겐 음이온의 친핵성이 클수록 촉매의 활성은 증가하였다. TBAC 촉매에 대해서 반응변수인 반응온도, 반응시간, 진공도가 반응에 미치는 영향을 고찰하였다. $ZnCl_2$를 조촉매로 사용한 경우 각각 촉매의 활성보다 더 높은 활성을 나타내어 시너지 효과가 관찰되었으며, 이것은 혼합촉매의 산-염기적 특성에 기인하는 것으로 판단된다.

Keywords

References

  1. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M. and Pina, C. D., "From Glycerol to Value-added Products," Angew. Chem. Int. Ed., 46, 4434-4440(2007). https://doi.org/10.1002/anie.200604694
  2. Zhang, Y., Zhang, N., Tang, Z. R. and Xu, Y. J., "Identification of $Bi_{2}WO_{6}$ as a Highly Selective Visible-light Photocatalyst Toward Oxidation of Glycerol to Dihydroxyacetone in Water," Chem. Sci., 4, 1820-1824(2013). https://doi.org/10.1039/c3sc50285f
  3. Behr A., Eilting J., Irawadi K., Leschinski J. and Lindner F., "Improved Utilisation of Renewable Resources: New Important Derivatives of Glycerol," Green Chem., 10, 13-30(2008). https://doi.org/10.1039/b710561d
  4. Aresta, M., Dibenedetto, A., Nocito, F. and Ferragina, C., "Valorization of Bio-glycerol: New Catalytic Materials for the Synthesis of Glycerol Carbonate Via Glycerolysis of Urea," J. Catal., 268, 106-114(2009). https://doi.org/10.1016/j.jcat.2009.09.008
  5. Randall, D. and De, V. R., "Chemical Blowing Agent," E.U. Patent, EP419114(1991).
  6. Sonnati, M. O., Amigoni, S., Givenchy, E. P. T. D., Darmanin, T., Choulet, O. and Guittard, F., "Glycerol Carbonate as a Versatile Building Block for Tomorrow: Synthesis, Reactivity, Properties and Applications," Green Chem., 15, 283-306(2013). https://doi.org/10.1039/c2gc36525a
  7. Plasma, V., Caulier, T. and Boulos, N., "Polyglycerol Esters Demonstrate Superior Antifogging Properties for Films," Plast. Addit. Compd., 7(2), 30-33(2005).
  8. Zhou, C. H., Beltramini, J. N., Fan, Y. X. and Lu, G. Q., "Chemoselective Catalytic Conversion of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals," Chem. Soc. Rev., 37, 527-549(2008). https://doi.org/10.1039/b707343g
  9. Simao, A. C., Pukleviciene, B. L., Rousseau, C., Tatibouet, A., Cassel, S., Sackus, A., Rauter, A. P. and Rollin, P., "1,2-Glycerol Carbonate: A Versatile Renewable Synthon," Lett. Org. Chem., 3, 744-748(2006). https://doi.org/10.2174/157017806779025960
  10. Clements, J. H., "Reactive Applications of Cyclic Alkylene Carbonates," Ind. Eng. Chem. Res., 42, US663-674(2003). https://doi.org/10.1021/ie020678i
  11. Mittelbach, M. and Remschmidt, C., "Biodiesel-The Comprehensive Handbook," Graz, Austria(2004).
  12. Teles, J. H., Rieber, N. and Harder, W., "Preparation of Glycerol Carbonate," U.S. Patent, 5359094(1994).
  13. Aresta, M., Dibenedetto, A. and Pastore, C., "Direct Carboxylation of Alcohols to Organic Carbonates: Comparison of the Group 5 Element Alkoxides Catalytic Activity: An Insight into the Reaction Mechanism and its Key Steps," Catal. Today, 115, 88-94(2006). https://doi.org/10.1016/j.cattod.2006.02.026
  14. Vieville, C., Yoo, J. W., Pelet, S. and Mouloungui, Z., "Synthesis of Glycerol Carbonate by Direct Carbonatation of Glycerol in Supercritical $CO_{2}$ in the Presence of Zeolites and ion Exchange Resins," Catal. Lett., 56, 245-247(1998). https://doi.org/10.1023/A:1019050205502
  15. Mouloungui, Z., Yoo, J. W., Gachen, C. A. and Gaset, A., "Process for the Preparation of Glycerol Carbonate from Glycerol and a Cyclic Organic Carbonate, Especially Ethylene or Propylene Carbonate," E.U. Patent, EP0739888(1996).
  16. Maria, J. C., Avelino, C., Pilar D. F., Sara I., Maria N., Alexandra V. and Patricia, C., "Concepcion Chemicals from biomass: Synthesis of Glycerol Carbonate by Transesterification and Carbonylation with Urea with Hydrotalcite Catalysts. The Role of Acid-base Pairs," J. Catal., 269, 140-149(2010). https://doi.org/10.1016/j.jcat.2009.11.001
  17. Ceri, H., Jose A. L. S., Mohd, H. A. R., Nikolaos, D., Robert, L. J., Albert, F. C., Qian, H., Christopher, J. K., David, W. K. and Graham, J. H., "Synthesis of Glycerol Carbonate from Glycerol and Urea with Gold-based Catalysts," Dalton Trans., 40, 3927- 3937(2011). https://doi.org/10.1039/c0dt01389g
  18. Sheldon, R., "Catalytic Reactions in Ionic Liquids," Chem. Commun., 2399-2407(2001).
  19. Zhao, D. B., Wu, M., Kou, Y. and Min, E. Z., "Ionic Liquids: Applications in Catalysis," Catal. Today, 74, 157-189(2002). https://doi.org/10.1016/S0920-5861(01)00541-7
  20. Wasserscheid, P. and Keim, W., "Ionic Liquids - New Solutions for Transition Metal Catalysis," Angew. Chem. Int. Ed., 39(21), 3772-3789(2000). https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  21. Jairton, D., Roberto, F. D. S. and Paulo, A. Z. S., "Ionic Liquid (molten salt) Phase Organometallic Catalysis," Chem. Rev., 102(10), 3667-3692(2002). https://doi.org/10.1021/cr010338r
  22. Marsh, K. N., Deev, A., Wu, A. C. T., Tran, E. and Klamt, A., "Room Temperature Ionic Liquids as Replacements for Conventional Solvents - a Review," Korean J. Chem. Eng., 19(3), 357- 362(2002). https://doi.org/10.1007/BF02697140
  23. Song, C. E., Shim, W. H., Roh, E. J. and Choi, J. H., "Scandium (III) Triflate Immobilised in Ionic Liquids: a Novel and Recyclable Catalytic System for Friedel-Crafts Alkylation of Aromatic Compounds with Alkenes," Chem. Commun., 1695-1696(2000).
  24. Mun, N. Y., Kim, K. H., Park, D. W., Choe, Y. and Kim, I., "Copolymerization of Phenyl Glycidyl Ether with Carbon Dioxide Catalyzed by Ionic Liquids," Korean J. Chem. Eng., 22, 556- 559(2005). https://doi.org/10.1007/BF02706642
  25. Lee, E. H., Cha, S. W., Manju, M. D., Choe, Y., Ahn, J. Y. and Park, D. W., "Cycloaddition of Carbon Dioxide to Epichlorohydrin Using Ionic Liquid as a Catalyst," Korean J. Chem. Eng., 24(3), 547-550(2007). https://doi.org/10.1007/s11814-007-0097-4
  26. Manju, M. D., Ahn, J. Y., Lee, M. K., Shim, H. L., Kim, K. H., Kim, I. and Park, D. W., "Moderate Route for the Utilization of $CO_{2}$-Microwave Induced Copolymerization with Cyclohexene Oxide using Highly Efficient Double Metal Cyanide Complex Catalysts Based on $Zn_{3}[Co(CN)_{6}]$," Green Chem., 10(6), 678-684 (2008). https://doi.org/10.1039/b801132j
  27. Peter, B., Heinz, F. and Walter, H., "Carbonates and Polycarbonates from Urea and Alcohol," Angew. Chem., Int. Ed. Engl., 19, 718-720(1980). https://doi.org/10.1002/anie.198007181
  28. Udaya, S. U., Park, S. W, Park, D. W and Choi, B. S., "Immobilization of Ionic Liquid on Hybrid MCM-41 System for the Chemical Fixation of Carbon Dioxide on Cyclic Carbonate," Catal. Commun., 9, 1563-1570(2008). https://doi.org/10.1016/j.catcom.2008.01.001

Cited by

  1. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.727
  2. Process intensification for tertiary amine catalyzed glycerol carbonate production: translating microwave irradiation to a continuous-flow process vol.5, pp.27, 2015, https://doi.org/10.1039/C5RA02117K