DOI QR코드

DOI QR Code

The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

NaOH 화학적 활성화로 제조된 하이브리드 커패시터의 전기화학적 특성

  • Choi, Jeong Eun (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Bae, Ga Yeong (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Yang, Jeong Min (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Research Institute of Industrial Sci. & Tech., Chungbuk National Univ.)
  • 최정은 (충북대학교 화학공학과, 산업과학기술연구소) ;
  • 배가영 (충북대학교 화학공학과, 산업과학기술연구소) ;
  • 양정민 (충북대학교 화학공학과, 산업과학기술연구소) ;
  • 이종대 (충북대학교 화학공학과, 산업과학기술연구소)
  • Received : 2013.02.06
  • Accepted : 2013.03.10
  • Published : 2013.06.01

Abstract

Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481 $m^2/g$) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using $LiMn_2O_4$, $LiCoO_2$ as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, $TEABF_4$) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using $LiMn_2O_4$/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

NaOH 화학적 활성화법을 사용하여 야자각 차로부터 고 비표면적과 미세기공이 발달된 활성탄을 제조하였다. 활성탄제조 공정은 탄화과정에서 활성화 약품과 야자각 차의 비율과 불활성 기체 유량과 같은 실험변수들을 분석함으로서 수행되었다. 이와 같은 NaOH 화학적 활성화에 의한 2,481 $m^2/g$의 고 비표면적과 2.32 nm의 평균 기공크기를 갖는 활성탄이 얻어졌다. 양극으로 $LiMn_2O_4$, $LiCoO_2$와 음극으로 제조된 활성탄을 사용하여 하이브리드 커패시터의 전기화학적 성능을 조사하였다. $LiPF_6$, $TEABF_4$의 유기 전해질을 사용한 하이브리드 커패시터의 전기화학적 거동은 정전류 충방전, 순환 전류 전압법, 사이클과 누설전류 테스트에 의해 특성화 되었다. $LiMn_2O_4$/AC 전극을 사용한 하이브리드 커패시터가 다른 하이브리드 시스템 보다 더 좋은 충방전 성능을 보였으며, 출력밀도 1,448 W/kg와 131 Wh/kg의 고 에너지 밀도를 전달할 수 있다.

Keywords

References

  1. Kandalkar, S. G., Lee, H. M., Seo, S. H., Lee, K. T. and Kim, C. K., "Preparation and Characterization of the Electrodeposited Ni-Co oxide Thin Films for Electrochemical Capacitors," Korean J. Chem. Eng., 28, 1464-1467(2011). https://doi.org/10.1007/s11814-010-0521-z
  2. Lee, S. W., Park, D. K., Lee, J. K., Ju, J. B. and Sohn, T. W., "Discharge Capacitance of Electric Double Layer Capacitor with Electrodes Made of Carbon Nanotubes Directly Deposited on SUS304 Plates," Korean J. Chem. Eng., 18, 371-375(2001). https://doi.org/10.1007/BF02699180
  3. Tanahashi, I., Yoshida, A. and Nishino, A., "Electrochemical Characterization of Activated Carbon-fiber Cloth Polarizable Electrodes for Electric Double Layer Capacitors," J. Electrochem. Soc., 137, 3052-3057(1990). https://doi.org/10.1149/1.2086158
  4. Tanahashi, I., Yoshida, A. and Nishino, A., "Activated Carbon Fiber Sheets as Polarizable Electrodes of Electric Double Layer Capacitors," Carbon, 28, 477-482(1990). https://doi.org/10.1016/0008-6223(90)90041-V
  5. Mitani, S., Lee, S. I., Yoon, S. H., Korai, Y. and Mochida, I., "Activation of Raw Pitch Coke with Alkali Hydroxide to Prepare High Performance Carbon for Electric Double Layer Capacitor," J. Power sources, 133, 298-301(2004). https://doi.org/10.1016/j.jpowsour.2004.01.047
  6. Roh, K. C., Park, J. B., Lee, C. T. and Park, C. W., "Study on High Density Activated Carbons for Electrode Materials of Supercapacitor," J. Korean Ind. Eng. Chem., 18, 381-385(2007).
  7. Ohta, T., Kim, I. T., Egashira, M., Yoshimoto, N. and Morita, M., "Effects of Electrolyte Composition on the Electrochemical Activation of Alkali-treated Soft Carbon as An Electric Double-layer Capacitor Electrode," J. Power Sources, 198, 408-415(2011).
  8. Liu, Z., Ling, L., Qiao, W. and Liu, L., "Effect of Hydrogen on the Mesopore Development of Pitch-based Spherical Activated Carbon Containing Iron During Activation by Steam," Carbon, 37, 2063-2066(1999). https://doi.org/10.1016/S0008-6223(99)00058-5
  9. Ozaki, J., Endo, N., Ohizumi, W., Igarashi, K., Nakahara, M. and Oya, A., "Novel Preparation Method for the Production of Mesoporous Carbon Fiber from a Polymer Blend," Carbon, 35, 1031-1033(1997). https://doi.org/10.1016/S0008-6223(97)89878-8
  10. Lillo-Rodenas, M. A., Lozano-Castello, D., Cazorla-Amoros, A. and Linares-Solano, "Preparation of Activated Carbons from Spanish Anthracite II. Activation by NaOH," Carbon, 39, 751-759(2001). https://doi.org/10.1016/S0008-6223(00)00186-X
  11. Gang, C. Y., Sin, Y. S. and Lee, J. D., "The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 10-14(2011). https://doi.org/10.9713/kcer.2011.49.1.010
  12. Wang, Y. G. and Xia, Y. Y., "A New Concept Hybrid Electrochemical Supercapacitor $Carbon/LiMn_{2}O_{4}$ Aqueous System," Electrochem. Commum., 7, 1138-1142(2005). https://doi.org/10.1016/j.elecom.2005.08.017
  13. Yoon, J. H., Bang, H. J., Prakash, J. and Sun, Y. K., "Comparative Study of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ Cathode Material Synthesized Via Different Synthetic Routes for Asymmetric Electrochemical Capacitor Applications," Matt. Chem. Phy., 110, 222-227(2008). https://doi.org/10.1016/j.matchemphys.2008.01.032
  14. Ma, S. B., Nam, K. W., Yoon, W. S., Yang, X. Q., Ahn, K. Y., Oh, K. H. and Kim, K. B., "A Novel Concept of Hybrid Capacitor Based on Manganese Oxide Materials," Electrochem. Commun., 9, 2807-2811(2007). https://doi.org/10.1016/j.elecom.2007.09.015
  15. Wang, K. P. and Teng, H., "The Performance of Electric Double Layer Capacitors Using Particulate Porous Carbons Derived from PAN Fiber and Phenol-formaldehyde Resin," Carbon, 44, 3218(2006). https://doi.org/10.1016/j.carbon.2006.06.031
  16. Lee, M. S., Sin, Y. S. and Lee, J. D., "Effect of Pore Structure on Electrochemical Performance of EDLC," J. Kor. Oil Chem. Soc., 27, 310-317(2011).
  17. Kwon, J. S., Yoon, Y. I. and Ko, J. M., "Electrochemical Properties of Activated Carbon Nanofiber for Electrochemical Double Layer Capacitor," Theor. Appl. Chem. Eng., 14, 2857(2008).
  18. Egashira, M., Sawada, N., Ueda, K., Yoshimoto, N. and Morita, M., "Capacitance of Porous Carbon Electrode in Mixed Salt Nonaqueous Electrolyte," J. Power Sources, 195, 1761-1764(2010). https://doi.org/10.1016/j.jpowsour.2009.09.041
  19. Pasquier, A. D., Huang, C. C. and Spitler, T., "Nano $Li_{4}Ti_{5}O_{12}-LiMn_{2}O_{4}$ Batteries with High Power Capability and Improves Cycle-life," J. Power Sources, 186, 508-514(2009). https://doi.org/10.1016/j.jpowsour.2008.10.018
  20. Hu, X., Deng, Z., Suo, J. and Pan, Z., "A High Rate, High Capacity and Long Life $(LiMn_{2}O_{4}+AC)/Li_{4}Ti_{5}O_{12}$ Hybrid Battery-Supercapacitor," J. Power Sources, 187, 635-639(2009). https://doi.org/10.1016/j.jpowsour.2008.11.033

Cited by

  1. Laccase-catalyzed synthesis of polypyrrole-multiwalled carbon nanotube composites as energy storage materials for capacitors vol.133, pp.16, 2016, https://doi.org/10.1002/app.43307
  2. Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor vol.26, pp.5, 2015, https://doi.org/10.7316/KHNES.2015.26.5.416
  3. 하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구 vol.55, pp.2, 2013, https://doi.org/10.9713/kcer.2017.55.2.242