DOI QR코드

DOI QR Code

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Received : 2013.01.31
  • Accepted : 2013.03.25
  • Published : 2013.03.30

Abstract

Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Keywords

References

  1. A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, "Histone deacetylases (HDACs): characterization of the classical HDAC family", Biochem. J., Vol. 370, pp. 737-749, 2003. https://doi.org/10.1042/BJ20021321
  2. K. Ito, P. J. Barnes, and I. M. Adcock, "Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12", Mol. Cell. Biol., Vol. 20, pp. 6891-6903, 2000. https://doi.org/10.1128/MCB.20.18.6891-6903.2000
  3. D. J. Witter, S. Belvedere, L. Chen, J. Paul Secrist, R. T. Mosleyd, and T. A. Millera, "Benzo[b]thiophenebased histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 17, pp 4562-4567, 2007. https://doi.org/10.1016/j.bmcl.2007.05.091
  4. T. Sundarapandian, J. Shalini, S. Sugunadevi, and L. K. Woo, "Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery", J. Mol. Graph. Model., Vol. 29, pp. 382-395, 2010. https://doi.org/10.1016/j.jmgm.2010.07.007
  5. S. Thangapandian, S. John, S. Sakkiah, and K. W. Lee, "Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design", Eur. J. Med. Chem., Vol. 45, pp. 4409-4417, 2010. https://doi.org/10.1016/j.ejmech.2010.06.024
  6. D. J. Witter, S. Belvedere, L. Chen, J. P. Secrist, R. T. Mosleyd, and T. A. Miller, "Benzo[b]thiophenebased histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 17, pp. 4562-4567, 2007. https://doi.org/10.1016/j.bmcl.2007.05.091
  7. S. Vadivelan, B.N. Sinha, G. Rambabu, K. Boppana, and S.A.R.P. Jagarlapudi, "Pharmacophore model ing and virtual screening studies to design some potential histone deacetylase inhibitors as new leads", J. Mol. Graph. Model., Vol. 26, pp. 935-946, 2008. https://doi.org/10.1016/j.jmgm.2007.07.002
  8. Y. Chen, H. Li, W. Tang, C. Zhu, Y. Jiang, J. Zou, Q. Yu and Q. You, "3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment", Eur. J. Med. Chem., Vol.44, pp. 2868-2876, 2009. https://doi.org/10.1016/j.ejmech.2008.12.008
  9. R. Heinke, L. Carlino, S. Kannan, M. Jung, and W. Sippl, "Computer-and structure-based lead design for epigenetic targets", Bioorg. Med. Chem., Vol. 19, pp. 3605-3615, 2011. https://doi.org/10.1016/j.bmc.2011.01.029
  10. D. P. Christensen, M. Dahllof, M. Lundh, D. N. Rasmussen, M. D. Nielsen, N. Billestrup, L. G. Grunnet, and T. M. Poulsen, "Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus", doi: 10.2119/molmed.2011.00021
  11. S. Balasubramanian, J. Ramos, W. Luo, M. Sirisawad, E. Verner, and J. J. Buggy, "A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas Leukemia 22", doi: 10.1038/leu.2008.9
  12. H. S. Suh, S. Choi, P. Khattar, N. Choi, and S. C. Lee, "Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes", J. Neuroimmune Pharmacol., Vol. 5, pp. 521-32, 2010. https://doi.org/10.1007/s11481-010-9192-0
  13. F. Miao, I. G. Gonzalo, L. Lanting, and R. Natarajan, "In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions", J. Biol. Chem., Vol. 279, pp. 18091-18097, 2004. https://doi.org/10.1074/jbc.M311786200
  14. N. Shanmugam, M. A. Reddy, M. Guha, and R. Natarajan, "High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells", Diabetes, Vol. 52, pp. 1256-64, 2003. https://doi.org/10.2337/diabetes.52.5.1256
  15. M. A. Halili, M. R. Andrews, L. I. Labzin, K. Schroder, G. Matthias, C. Cao, E. Lovelace, R. C. Reid, G. T. Le, D. A. Hume, K. M. Irvine, P. Matthias, D. P. Fairlie, and M. J. Sweet, "Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS", J. Leukoc. Biol., Vol. 87, pp. 1103-14, 2010. https://doi.org/10.1189/jlb.0509363
  16. F. Leoni, G. Fossati, E. C. Lewis, J. K. Lee, G. Porro, P. Pagani, D. Modena, M. L. Moras, P. Pozzi, L. L. Reznikov, B. Siegmund, G. Fantuzzi, C. A. Dinarello, and Paolo Mascagni, "The histone deacetylase inhibitor ITF2357 reduces production of proinflammatory cytokines in vitro and systemic inflammation in vivo", Mol. Med., Vol. 11, pp. 1-15, 2005.
  17. M. A. Halili, M. R. Andrews, M. J. Sweet, and D. P. Fairlie, "Histone deacetylase inhibitors in inflammatory disease", Curr. Top. Med. Chem., Vol. 9, pp. 309-319, 2009. https://doi.org/10.2174/156802609788085250
  18. I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, "Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis", J. Mol. Biol., Vol. 338, pp. 17-31, 2004. https://doi.org/10.1016/j.jmb.2004.02.006
  19. C. Choudhary, C. Kumar, F. Gnad , M. L. Nielsen, M. Rehman, T. C. Walther, J. V. Olsen, and M. Mann, "Lysine acetylation targets protein complexes and co-regulates major cellular functions", Science, Vol. 325, pp. 834-840, 2009. https://doi.org/10.1126/science.1175371
  20. A. Vannini, C. Volpari, P. Gallinari, P. Jones, M. Mattu, A. Carfi, R. D. Francesco, C. Steinkuhler, and S. D. Marco, "Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex", EMBO reports, Vol. 8, pp. 9, 2007.
  21. S. Timmermann, H. Lehrmann, A. Polesskaya, and A. Harel-Bellan, "Histone acetylation and disease", Cell. Mol. Life Sci., Vol. 58, pp. 728-736, 2001. https://doi.org/10.1007/PL00000896
  22. E. D. Gennaro, F. Bruzzese1, M. Caraglia, A. Abruzzese, and A. Budillon, "Acetylation of proteins as novel target for antitumor therapy", Amino Acids, Vol. 26, pp. 435-441, 2004.
  23. M. Haberland, M. H. Mokalled, R. L. Montgomery, and E. N. Olson, "Epigenetic control of skull morphogenesis by histone deacetylase 8", Gene. Dev., Vol. 23, pp 1625-1630, 2009. https://doi.org/10.1101/gad.1809209
  24. M. Dokmanovic and P. A. Marks, "Prospects: histone deacetylase inhibitors", J. Cell. Biochem., Vol. 96, pp. 293-304, 2005. https://doi.org/10.1002/jcb.20532
  25. B. E. Morrison, N. Majdzadeh, and S. R. D. Mello, "Histone deacetylases: Focus on the nervous system", Cell. Mol. Life Sci., Vol. 64, pp. 2258-2269, 2007. https://doi.org/10.1007/s00018-007-7035-9
  26. T. A. McKinsey, "Isoform-selective HDAC inhibitors: Closing in on translational medicine for the heart", J. Mol. Cell. Cardiol., Vol. 51, pp. 491-496, 2011. https://doi.org/10.1016/j.yjmcc.2010.11.009
  27. D. M. Fass, S. A. Reis, B. Ghosh, K. M. Hennig, N. F. Joseph d, W. N. Zhao, T. J.F. Nieland, J. S. Guan, C. E. G. Kuhnle, W. Tang, D. D. Barker, R. Mazitschek, S. L. Schreiber, L. H. Tsai, and S. J. H. Crebinostat, "A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity", Neuropharmacology, Vol. 64, pp. 81-96, 2013. https://doi.org/10.1016/j.neuropharm.2012.06.043
  28. X. Wanga, X. Weia, Q. Pangb, and F. Yia, "Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus", Acta Pharmaceutica Sinica B, Vol. 2, pp. 387-395, 2012. https://doi.org/10.1016/j.apsb.2012.06.005
  29. T. Suzuki, A. Matsuura, A. Kouketsu, H. Nakagawa, and N. Miyata, "Identification of a potent nonhydroxamate histone deacetylase inhibitor by mechanism-based drug design", Bioorg. Med. Chem. Lett., Vol. 15, pp. 331-335, 2005. https://doi.org/10.1016/j.bmcl.2004.10.074
  30. M. R. Shakespear, M. A. Halili, K. M. Irvine, D. P. Fairlie, and Matthew J. Sweet, "Histone deacetylases as regulators of inflammation and immunity", Trends Immunol., Vol. 32, pp. 335-343, 2011. https://doi.org/10.1016/j.it.2011.04.001
  31. O. Witt and R. Lindemann "HDAC inhibitors: Magic bullets, dirty drugs or just another targeted therapy", Cancer Lett., Vol. 280, pp. 123-124, 2009. https://doi.org/10.1016/j.canlet.2009.02.038
  32. T. Suzuki, A. Kouketsu, A. Matsuura, A. Kohara, S. I. Ninomiya, K. Kohdaa, and Naoki Miyataa, "Thiol-based SAHA analogues as potent histone deacetylase Inhibitors", Bioorg. Med. Chem. Lett., Vol. 14, pp. 3313-3317, 2004. https://doi.org/10.1016/j.bmcl.2004.03.063
  33. S. E. Choi, S. V.W. Weerasinghe, and M. K. H. Pflum, "The structural requirements of histone deacetylase inhibitors: suberoylanilide hydroxamic acid analogs modified at the C3 position display isoform selectivity", Bioorg. Med. Chem. Lett., Vol. 21, pp. 6139-6142, 2011. https://doi.org/10.1016/j.bmcl.2011.08.027
  34. D. Ling, G. M. Marshall, P. Y. Liu, N. Xu, C. A. Nelson, S. E. Iismaa, and T. Liu, "Enhancing the anticancer effect of the histone deacetylase inhibitor by activating transglutaminase", Eur. J. Cancer, Vol. 48, pp. 3278-3287, 2012. https://doi.org/10.1016/j.ejca.2012.02.067
  35. H. Wang, Z. Y. Lim, Y. Zhou, M. Ng, T. Lu, K. Lee, K. Sangthongpitag, K. C. Goh, X. Wangb, X. Wub, H. H. Khng, S. K. Goh, W. C. Ong, Z. Bonday, and E. T. Sun, "A acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: synthesis, SAR, and in vivo antitumor activity", Bioorg. Med. Chem. Lett., Vol. 20, pp. 3314-3321, 2010. https://doi.org/10.1016/j.bmcl.2010.04.041
  36. A. Wahhab, D. Smil, A. Ajamian, M. Allan, Y. Chantigny, E. Therrien, N. Nguyen, S. Manku, S. Leit, J. Rahil, A. J. Petschner, A. H. Lu, A. Nicolescu, S. Lefebvre, S. Montcalm, M. Fournel, T. P. Yan, Z. Li, J. M. Besterman, and R. Deziel, "Sulfamides as novel histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 19, pp. 336-340, 2009. https://doi.org/10.1016/j.bmcl.2008.11.081
  37. S. Manku, M. Allan, N. Nguyen, A. Ajamian, J. Rodrigue, E. Therrien, J. Wang, T. Guo, J. Rahil, A. J. Petschner, A. Nicolescu, S. Lefebvre, Z. Li, M. Fournel, J. M. Besterman, R. Deziel, and A. Wahhab, "Synthesis and evaluation of lysine derived sulfamides as histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 19, pp. 1866-1870, 2009. https://doi.org/10.1016/j.bmcl.2009.02.075
  38. B. Chen, P. A. Petukhov, M. Jung, A. Velena, E. Eliseeva, A. Dritschilob, and A. P. Kozikowski, "Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 15, pp. 1389-1392, 2005. https://doi.org/10.1016/j.bmcl.2005.01.006
  39. O. Moradei, S. Leit, N. Zhou, S. Frechette, I. Paquin, S. Raeppel, F. Gaudette, G. Bouchain, S. H. Woo, A. Vaisburg, M. Fournel, A. Kalita, A. Lu, M. C. T. Bourget, P. T. Yan, J. Liu, Z. Li, J. Rahil, A. R. MacLeod, J. M. Bestermanb, and Daniel Delormea, "Substituted N-(2-aminophenyl)-benzamides, (E)-N-(2-aminophenyl)-acrylamides and their analogues: Novel classes of histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 16, pp. 4048-4052, 2006. https://doi.org/10.1016/j.bmcl.2006.05.005
  40. I. Paquin, S. Raeppel, S. Leit, F. Gaudette, N. Zhou, O. Moradei, O. Saavedra, N. Bernstein, F. Raeppel, G. Bouchain, S. Frechette, S. H. Woo, A. Vaisburg, M. Fournel, A. Kalita, M. F. Robert, A. Lu, M. C. T. Bourget, P. T. Yan, J. Liu, J. Rahil, A. R. MacLeod, J. M. Besterman, Z. Lib, and Daniel Delorme, "Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 18, pp. 1067-1071, 2008. https://doi.org/10.1016/j.bmcl.2007.12.009

Cited by

  1. Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.273
  2. Docking Study of Human Galactokinase Inhibitors vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.267
  3. 3D-QSAR Studies on 2-(indol-5-yl)thiazole Derivatives as Xanthine Oxidase (XO) Inhibitors vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.258