DOI QR코드

DOI QR Code

Isoparametric Curve of Quadratic F-Bézier Curve

  • Received : 2013.01.02
  • Accepted : 2013.03.25
  • Published : 2013.03.30

Abstract

In this thesis, we consider isoparametric curves of quadratic F-B$\acute{e}$zier curves. F-B$\acute{e}$zier curves unify C-B$\acute{e}$zier curves whose basis is {sint, cos t, t, 1} and H-B$\acute{e}$zier curves whose basis is {sinht, cosh t, t,1}. Thus F-B$\acute{e}$zier curves are more useful in Geometric Modeling or CAGD(Computer Aided Geometric Design). We derive the relation between the quadratic F-B$\acute{e}$zier curves and the quadratic rational B$\acute{e}$zier curves. We also obtain the geometric properties of isoparametric curve of the quadratic F-B$\acute{e}$zier curves at both end points and prove the continuity of the isoparametric curve.

Keywords

References

  1. H. Pottmann, "The geometry of Tchebycheffian spines", Comput. Aided Geom. D., Vol. 10, pp. 181-210, 1993. https://doi.org/10.1016/0167-8396(93)90036-3
  2. J. Zhang, "C-curves: An extension of cubic curves", Comput. Aided Geom. D., Vol. 13, pp. 199-217, 1996. https://doi.org/10.1016/0167-8396(95)00022-4
  3. J. Zhang, "Two different forms of C-B-splines", Comput. Aided Geom. D., Vol. 14, pp. 31-41, 1997, https://doi.org/10.1016/S0167-8396(96)00019-2
  4. J. W. Zhang, "C-Bezier curves and surfaces", Graph. Models Image Process, Vol. 61, pp. 2-15, 1999. https://doi.org/10.1006/gmip.1999.0490
  5. E. Mainar, J. Pena, and J. Sanchez-Reyes, "Shape preseving alternatives to the raional Bezier model", Comput. Aided Geom. D., Vol. 18, pp. 37-60, 2001.
  6. Q. Chen and G. Wang, "A class of Bezier-like curves", Comput. Aided Geom. D., Vol. 20, pp. 29-39, 2003. https://doi.org/10.1016/S0167-8396(03)00003-7
  7. Y. Lu, G. Wang, and X. Yang, "Uniform hyperbolic polynomial B-spline curves", Comput. Aided Geom. D., Vol. 19, pp. 379-393, 2002. https://doi.org/10.1016/S0167-8396(02)00092-4
  8. J. W. Zhang and F.-L. Krause, "Extend cubic uniform B-splines by unified trigonometric and hyberolic basis", Graph. Models, Vol. 67, pp. 100-119, 2005. https://doi.org/10.1016/j.gmod.2004.06.001
  9. J. Zhang, F.-L. Krause, and H. Zhang, "Unifying C-curves and H-curves by extending the calculation to complex numbers", Comput. Aided Geom. D., Vol. 22, pp. 865-883, 2005. https://doi.org/10.1016/j.cagd.2005.04.009
  10. G. Farin, "Curves and surfaces for Computer Aided Geometric Design: A particle code", fifth ed. Academic Press, London, 2001.
  11. M. Floater, "An $O(h^{2n})$ Hermite approximation for conic sections", Comput. Aided Geom. D., Vol. 14, pp. 135-151, 1997. https://doi.org/10.1016/S0167-8396(96)00025-8
  12. H. Y. Park, "Properties of isoparametric curve of quadratic F-Bezier curve", M.S. thesis, Chosun University, 2012.

Cited by

  1. Isotomic and Isogonal Conjugates Tangent Lines of Lines at Vertices of Triangle vol.10, pp.1, 2017, https://doi.org/10.13160/ricns.2017.10.1.27