DOI QR코드

DOI QR Code

Maxillary cement retained implant supported monolithic zirconia prosthesis in a full mouth rehabilitation: a clinical report

  • Sadid-Zadeh, Ramtin (Department of Prosthdontics, University of Alabama at Birmingham, School of Dentistry) ;
  • Liu, Perng-Ru (Department of Prosthdontics, University of Alabama at Birmingham, School of Dentistry) ;
  • Aponte-Wesson, Ruth (University of Alabama at Birmingham, School of Dentistry) ;
  • O'Neal, Sandra J. (Department of Prosthdontics, University of Alabama at Birmingham, School of Dentistry)
  • Received : 2012.09.17
  • Accepted : 2013.05.07
  • Published : 2013.05.31

Abstract

This clinical report presents the reconstruction of a maxillary arch with a cement retained implant supported fixed prosthesis using a monolithic zirconia generated by CAD/CAM system on eight osseointegrated implants. The prosthesis was copy milled from an interim prosthesis minimizing occlusal adjustments on the definitive prosthesis at the time of delivery. Monolithic zirconia provides high esthetics and reduces the number of metal alloys used in the oral cavity.

Keywords

References

  1. Bergendal B, Palmqvist S. Laser-welded titanium frameworks for implant-supported fixed prostheses: a 5-year report. Int J Oral Maxillofac Implants 1999;14:69-71.
  2. Bozini T, Petridis H, Garefis K, Garefis P. A meta-analysis of prosthodontic complication rates of implant-supported fixed dental prostheses in edentulous patients after an observation period of at least 5 years. Int J Oral Maxillofac Implants 2011;26:304-318.
  3. Larsson C, Vult von Steyern P, Nilner K. A prospective study of implant-supported full-arch yttria-stabilized tetragonal zirconia polycrystal mandibular fixed dental prostheses: threeyear results. Int J Prosthodont 2010;23:364-369.
  4. Papaspyridakos P, Lal K. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: a clinical report. J Prosthet Dent 2008; 100:165-172. https://doi.org/10.1016/S0022-3913(08)00110-8
  5. Hassel AJ, Shahin R, Kreuter A, Rammelsberg P. Rehabilitation of an edentulous mandible with an implant-supported fixed prosthesis using an all-ceramic framework: a case report. Quintessence Int 2008;39:421-426.
  6. Ghazal M, Hedderich J, Kern M. Wear of feldspathic ceramic, nano-filled composite resin and acrylic resin artificial teeth when opposed to different antagonists. Eur J Oral Sci 2008; 116:585-592. https://doi.org/10.1111/j.1600-0722.2008.00573.x
  7. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants 1991;6:270-276.
  8. Suzuki S. In vitro wear of nano-composite denture teeth. J Prosthodont 2004;13:238-243. https://doi.org/10.1111/j.1532-849X.2004.04043.x
  9. Coachman C, Salama M, Garber D, Calamita M, Salama H, Cabral G. Prosthetic gingival reconstruction in fixed partial restorations. Part 3: laboratory procedures and maintenance. Int J Periodontics Restorative Dent 2010;30:19-29.
  10. Bencharit S, Schardt-Sacco D, Border MB, Barbaro CP. Full mouth rehabilitation with implant-supported prostheses for severe periodontitis: a case report. Open Dent J 2010;4:165-171 https://doi.org/10.2174/1874210601004010165
  11. Hagiwara Y, Nakajima K, Tsuge T, McGlumphy EA. The use of customized implant frameworks with gingiva-colored composite resin to restore deficient gingival architecture. J Prosthet Dent 2007;97:112-117. https://doi.org/10.1016/j.prosdent.2006.12.011
  12. Alani A, Maglad A, Nohl F. The prosthetic management of gingival aesthetics. Br Dent J 2011;210:63-69. https://doi.org/10.1038/sj.bdj.2011.2
  13. Linkevicius T, Vladimirovas E, Grybauskas S, Puisys A, Rutkunas V. Veneer fracture in implant-supported metal-ceramic restorations. Part I: Overall success rate and impact of occlusal guidance. Stomatologija 2008;10:133-139.
  14. Roberts DH. The failure of retainers in bridge prostheses. An analysis of 2,000 retainers. Br Dent J 1970;128:117-124. https://doi.org/10.1038/sj.bdj.4802433
  15. Jacobi R, Shillingburg HT Jr, Duncanson MG Jr. Effect of abutment mobility, site, and angle of impact on retention of fixed partial dentures. J Prosthet Dent 1985;54:178-183. https://doi.org/10.1016/0022-3913(85)90281-1
  16. Reuter JE, Brose MO. Failures in full crown retained dental bridges. Br Dent J 1984;157:61-63. https://doi.org/10.1038/sj.bdj.4805411
  17. Llobell A, Nicholls JI, Kois JC, Daly CH. Fatigue life of porcelain repair systems. Int J Prosthodont 1992;5:205-213.
  18. Ehrenkranz H, Langer B, Marotta L. Complete-arch maxillary rehabilitation using a custom-designed and manufactured titanium framework: a clinical report. J Prosthet Dent 2008; 99:8-13. https://doi.org/10.1016/S0022-3913(08)60001-3
  19. Stefan H, Michael B, Enrico S, Markus BB, Manfred W. The Application of Zirconium Oxide Frameworks for Implant Superstructures. Quintessence Dent Tech 2006;29:103-112.
  20. Ohlmann B, Marienburg K, Gabbert O, Hassel A, Gilde H, Rammelsberg P. Fracture-load values of all-ceramic cantilevered FPDs with different framework designs. Int J Prosthodont 2009;22:49-52.
  21. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;37:641-652.
  22. Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont 2010;23:493-502.
  23. Angle EH. Classification of malocclusion. Dental Cosmos 1899;41:248-264.
  24. Kaplan P. Drifting, tipping, supraeruption, and segmental alveolar bone growth. J Prosthet Dent 1985;54:280-283. https://doi.org/10.1016/0022-3913(85)90305-1
  25. Del Castillo R, Ercoli C, Delgado JC, Alcaraz J. An alternative multiple pontic design for a fixed implant-supported prosthesis. J Prosthet Dent 2011;106:198-203. https://doi.org/10.1016/S0022-3913(11)60122-4
  26. Edelhoff D, Spiekermann H, Yildirim M. A review of esthetic pontic design options. Quintessence Int 2002;33:736-746.
  27. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  28. Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater 2007;23:106-114. https://doi.org/10.1016/j.dental.2005.12.008
  29. Lüthy H, Filser F, Loeffel O, Schumacher M, Gauckler LJ, Hammerle CH. Strength and reliability of four-unit all-ceramic posterior bridges. Dent Mater 2005;21:930-937. https://doi.org/10.1016/j.dental.2004.11.012
  30. Ronald LS, John MP. Evolve resources for Craig's restorative dental materials. 12th ed. Mosby; 2006.
  31. Quirynen M, Bollen CM, Willems G, van Steenberghe D. Comparison of surface characteristics of six commercially pure titanium abutments. Int J Oral Maxillofac Implants 1994;9:71-76.
  32. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17:68-81. https://doi.org/10.1111/j.1600-0501.2006.01353.x
  33. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997;13:258-269. https://doi.org/10.1016/S0109-5641(97)80038-3
  34. Sardin S, Morrier JJ, Benay G, Barsotti O. In vitro streptococcal adherence on prosthetic and implant materials. Interactions with physicochemical surface properties. J Oral Rehabil 2004;31:140-148. https://doi.org/10.1046/j.0305-182X.2003.01136.x
  35. Johannsen G, Redmalm G, Rydén H. Surface changes on dental materials. II. The influence of two different dentifrices on surface roughness measured by laser reflexion and profilometer techniques. Swed Dent J 1992;16:13-20.
  36. Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J. The effect of surface roughening of polymers on measured contact angles of liquids. Colloid Surf 1984;9:319-331. https://doi.org/10.1016/0166-6622(84)80175-4
  37. Heath JR, Wilson HJ. Surface roughness of restorations. Br Dent J 1976;140:131-137. https://doi.org/10.1038/sj.bdj.4803717
  38. Rosenstiel SF, Baiker MA, Johnston WM. Comparison of glazed and polished dental porcelain. Int J Prosthodont 1989; 2:524-529.
  39. Ward MT, Tate WH, Powers JM. Surface roughness of opalescent porcelains after polishing. Oper Dent 1995;20:106-110.
  40. Al-Wahadni A. An in vitro investigation into the surface roughness of 2 glazed, unglazed, and refinished ceramic materials. Quintessence Int 2006;37:311-317.
  41. Klausner LH, Cartwright CB, Charbeneau GT. Polished versus autoglazed porcelain surfaces. J Prosthet Dent 1982; 47:157-162. https://doi.org/10.1016/0022-3913(82)90180-9
  42. Sasahara RM, Ribeiro Fda C, Cesar PF, Yoshimura HN. Influence of the finishing technique on surface roughness of dental porcelains with different microstructures. Oper Dent 2006;31:577-583. https://doi.org/10.2341/05-104
  43. Rosentritt M, Preis V, Behr M, Hahnel S, Handel G, Kolbeck C. Two-body wear of dental porcelain and substructure oxide ceramics. Clin Oral Investig 2012;16:935-943. https://doi.org/10.1007/s00784-011-0589-9
  44. Vigolo P, Motterle M. An in vitro evaluation of zirconia surface roughness caused by different scaling methods. J Prosthet Dent 2010;103:283-287. https://doi.org/10.1016/S0022-3913(10)60059-5
  45. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants. 2002;17:793-798.
  46. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004;75:292-296. https://doi.org/10.1902/jop.2004.75.2.292
  47. Jung YS, Lee JW, Choi YJ, Ahn JS, Shin SW, Huh JB. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Adv Prosthodont 2010;2: 111-115. https://doi.org/10.4047/jap.2010.2.3.111
  48. Preis V, Behr M, Handel G, Schneider-Feyrer S, Hahnel S, Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behav Biomed Mater 2012;10:13-22. https://doi.org/10.1016/j.jmbbm.2012.03.002
  49. Preis V, Behr M, Kolbeck C, Hahnel S, Handel G, Rosentritt M. Wear performance of substructure ceramics and veneering porcelains. Dent Mater 2011;27:796-804. https://doi.org/10.1016/j.dental.2011.04.001
  50. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007

Cited by

  1. Dual Jaw Treatment of Edentulism Using Implant-Supported Monolithic Zirconia Fixed Prostheses vol.27, pp.2, 2015, https://doi.org/10.1111/jerd.12137
  2. Shear bond strength of indirect composite material to monolithic zirconia vol.8, pp.4, 2016, https://doi.org/10.4047/jap.2016.8.4.267
  3. Retrospective 2- to 7-Year Follow-Up Study of 20 Double Full-Arch Implant-Supported Monolithic Zirconia Fixed Prostheses: Measurements and Recommendations for Optimal Design pp.1059941X, 2018, https://doi.org/10.1111/jopr.12528
  4. Monolithic Zirconia for Prosthetic Reconstructions: Advantages and Limitations vol.4, pp.3, 2017, https://doi.org/10.1007/s40496-017-0153-z
  5. Clinical Advantages and Limitations of Monolithic Zirconia Restorations Full Arch Implant Supported Reconstruction: Case Series vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/392496
  6. An overview of monolithic zirconia in dentistry vol.30, pp.4, 2013, https://doi.org/10.1080/13102818.2016.1177470
  7. Comparison of Optical Properties of Laminate Veneers Made of Zolid FX and Katana UTML Zirconia and Lithium Disilicate Ceramics vol.16, pp.5, 2019, https://doi.org/10.18502/fid.v16i5.2284
  8. Effects of sintering time on translucency and color of translucent zirconia ceramics vol.33, pp.4, 2021, https://doi.org/10.1111/jerd.12723