The Notion of Truth in Intuitionistic Type Theory

직관주의적 유형론에서의 진리개념

  • Received : 2013.09.05
  • Accepted : 2013.10.07
  • Published : 2013.10.30

Abstract

I examine the notion of truth in the intuitionistic type theory and provide a better explanation of the objective intuitionistic conception of mathematical truth than that of Dag Prawitz. After a brief explanation of the distinction among proposition, type and judgement in comparison with Frege's theory of judgement, I examine the judgements of the form 'A true' in the intuitionistic type theory and explain how the determinacy of the existence of proofs can be understood intuitionistically. I also examine how the existential judgements of the form 'Pf(A) exists' should be understood. In particular, I diagnose the reason why such existential judgements do not have propositional contents. I criticize an understanding of the existential judgements as elliptical judgements. I argue that, at least in two respects, the notion of truth explained in this paper is a more advanced version of the objective intuitionistic conception of mathematical truth than that provided by Prawitz. I briefly consider a subjectivist's objection to the conception of truth explained in this paper and provide an answer to it.

이 글의 목표는 직관주의적 유형론에서의 진리개념이 어떻게 이해될 수 있는지를 검토하고, 이에 의거하여 직관주의적이면서 객관적인 진리개념을 확보하는 문제에 있어서 프라위츠의 논증보다 진전된 논증을 제시하는 것이다. 이를 위해, 직관주의적 유형론에서의 명제, 유형 및 판단의 구분을 프레게의 판단이론과 비교하며 간략히 설명한 후, 직관주의적 유형론에서의 진리판단을 분석하고, 이에 의거해 증명의 존재의 확정성이 어떻게 이해될 수 있는지 밝힐 것이다. 또한 직관주의적 유형론에서 진리판단으로서의 존재판단이 어떻게 이해되어야 하는지, 특히 왜 그것이 존재양화명제가 될 수 없는지 그 이유를 밝히고, 존재판단을 생략적 판단으로 해석하는 한 견해를 비판할 것이다. 직관주의적 유형론에서의 진리개념에 관한 이 글에서의 분석은 증명의 존재의 확정성 문제와 증명의 존재의 비명제적 성격을 분명히 한 점에서 직관주의적이고 객관적인 진리개념에 대한 프라위츠의 규정보다 진전된 형태의 설명임을 밝히고, 이런 진리개념에 대한 주관적 진리개념의 옹호자들의 한 비판에 답할 것이다.

Keywords