DOI QR코드

DOI QR Code

이질 재료 간의 링 전단특성 연구

Ring Shear Characteristics of Two Different Soils

  • 박성식 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 정승원 (한국지질자원연구원 지질재해연구실) ;
  • 윤준한 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 채병곤 (한국지질자원연구원 지질재해연구실)
  • Park, Sung-Sik (Dept. of Civil Eng., Kyungpook National Univ.) ;
  • Jeong, Sueng-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yoon, Jun-Han (Dept. of Civil Eng., Kyungpook National Univ.) ;
  • Chae, Byung-Gon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2013.03.14
  • 심사 : 2013.04.18
  • 발행 : 2013.05.31

초록

본 연구는 포화-압밀-전단 제어형 링전단시험장치를 이용하여 (i) 전단시간에 따른 전단응력 특성, (ii) 구속압과 전단속도에 따른 전단특성 및 (iii) 전단속도에 따른 전단응력 특성에 대한 연구를 수행하였다. 이질 재료간의 전단특성을 살펴보고자 낙동강 모래와 해안 점토를 사용하였다. 본 연구에서는 모래와 모래, 점토와 점토, 모래와 점토끼리의 전단특성을 살펴보고자 비배수 조건에서 특정 구속압(50과 100kPa)에 대한 실험을 1차적으로 수행하였다. 모든 실험은 특정 구속압에 대해 300sec 동안 자동 압밀조건을 거친 후 전단실험을 수행하였다. 2차 실험으로 세 시료에 대한 수직응력 변화에 따른 전단응력 특성을 살펴보고자 수직응력을 20~150kPa까지 단계별로 높여가며 실험을 수행하였다. 마지막으로 특정 구속압에 대해 전단속도를 0.01, 0.1, 1, 10, 100mm/sec까지 5 단계로 나누어 실험을 수행하였다. 이질재료 간의 전단응력은 특정 구속압 하에서 모래-점토의 전단응력(최대전단응력과 잔류전단응력)은 모래-모래보다는 작고, 점토-점토보다는 약간 큰 것으로 나타났다. 전단응력은 구속압과 전단속도에 의해 전단면에서 발생하는 입자 파쇄와 젖음현상에 의존하는 것으로 나타났다.

The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

키워드

참고문헌

  1. Brumund, W. F. and Leonards, G. A. (1973), Experimental study of static and dynamics friction between sand and typical construction materials, Journal of Testing and Evaluation, Vol.1(2), pp.162-165. https://doi.org/10.1520/JTE10893J
  2. Fukuoka, H., Sassa, K., and Wang, G. (2007), "Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests", Landslides, Vol.4, pp.63-74. https://doi.org/10.1007/s10346-006-0053-0
  3. Jeong, S.W., Fukuoka, H., and Song, Y.S. (2013), "Ring-shear apparatus for estimating the mobility of debris flow and its application", Journal of Korean Society of Civil Engineering, Vol.33(1), pp.181-194. (Korean) https://doi.org/10.12652/Ksce.2013.33.1.181
  4. Jeong, S.W. (2010), "Grain size dependent rheology on the mobility of debris flows", Geosciences Journal, Vol.14(4), pp.359-369. https://doi.org/10.1007/s12303-010-0036-y
  5. Kim, Y.S. and Kim, D.M. (2009), "Characteristics of Friction Angles between the Nakdong River Sand and Construction Materials by Direct Shear Test", Journal of the Korean geotechnical society, Vol.25(4), pp.105-112. (Korean)
  6. Korean Geotechnical Society (2011), Final report on Landslides at Umyeonsan, KGS, KGS11-250.
  7. Korea Institute of Geoscience and Mineral Resources (2009), Development of practical technologies for countermeasures for hazards in steep slope and abandoned mine areas, Ministry of Knowledge Economy, GP2009-020-2009(1), 315p. (Korean)
  8. Park, S.S. and Y.S. Kim (2011), "Effect of Gravel Size on Shear Behavior of Sand with Dispersed Gravels", Journal of Korean Society of Civil Engineering, 31(1C), pp.31-51. (Korean)
  9. Park, S.S., Kim, Y.S., and Sung, H.Y. (2010), "Undrained Shear Behavior of Sand with Dispersed Gravels", Journal of Korean Society of Civil Engineering, 30(5C), pp.209-218. (Korean)
  10. Potyondy, J.G. (1961), Skin friction between various soils and construction materials, Geotechnique, Vol.11(4), pp.339-353. https://doi.org/10.1680/geot.1961.11.4.339
  11. Sassa, K. (1992), Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring-shear apparatus, Proc. 6th International Symposium on Landslides, Christchurch, Vol.3, pp.1919-1937.
  12. Sassa, K. (1997), A new intelligent-type dynamic-loading ring-shear apparatus. Landslide News, No.10, p.33.
  13. Sassa, K., Fukuoka, H., Wang, G., and Ishikawa, N. (2004), Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics, Landslides, Vol.1, pp.7-19. https://doi.org/10.1007/s10346-003-0004-y
  14. Tika, T.E., Vaughan, P.R., and Lemos, L.J. (1996), Fast shearing of pre-existing shear zones in soil, Geotechnique, Vol.46, No.2, pp.197-233. https://doi.org/10.1680/geot.1996.46.2.197
  15. Tika, T.E. and Hutchinson, J.N. (1999), Ring shear tests on soil from the Vaiont landslide slip surface, Geotechnique, Vol.49, No.1, pp.59-74. https://doi.org/10.1680/geot.1999.49.1.59
  16. Uesugi, M., Kishida, H., and Uchikawa, Y. (1990), Friction between dry sand and concrete under monotonic and repeated loading, Soils and Foundations, Vol.30(1), pp.115-128. https://doi.org/10.3208/sandf1972.30.115
  17. Vallejo, L.E. (2001), Interpretation of the limits in shear strength in binary granular mixtures. Canadian Geotechnical Journal, Vol. 38, pp.1097-1104. https://doi.org/10.1139/t01-029
  18. Vallejo, L.E. and Lobo-Guerrero, S. (2005), The elastic moduli of clays with dispersed oversized particles. Engineering Geology, Vol.78, pp.163-171. https://doi.org/10.1016/j.enggeo.2004.12.003
  19. Vallejo, L.E. and Mawby, R. (2000), Porosity influence on the shear strength of granular material-clay mixtures. Engineering Geology, 58, pp.125-136. https://doi.org/10.1016/S0013-7952(00)00051-X

피인용 문헌

  1. 부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구 vol.30, pp.7, 2013, https://doi.org/10.7843/kgs.2014.30.7.5