CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTIONS IN HILBERT SPACES

YING LIU

Abstract

In this paper, we introduce an iterative scheme for finding a common element of the set of solutions of a generalized equilibrium problem and the set of common fixed points of a finite family of asymptotically k-strict pseudo-contractions in Hilbert spaces. Weak and strong convergence theorems are established for the iterative scheme.

1. Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H. Assume that a bifunction $F: C \times C \rightarrow R$ satisfies the following conditions:
(A1) $F(x, x)=0, \forall x \in C$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leq 0, \forall x, y \in C$;
(A3) $\lim _{t \downarrow 0} F(t z+(1-t) x, y) \leq F(x, y), \forall x, y, z \in C$;
(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
Let $A: C \rightarrow H$ be a nonlinear mapping. Then, we consider the following generalized equilibrium problem(GEP) which is to find $z \in C$ such that

$$
\begin{equation*}
\text { GEP: } F(z, y)+\langle A z, y-z\rangle \geq 0, \forall y \in C \tag{1.1}
\end{equation*}
$$

In the case of $A \equiv 0$, this problem (1.1) reduces to the equilibrium problem(EP), which is to find $z \in C$ such that

$$
\begin{equation*}
\text { EP: } F(z, y) \geq 0, \forall y \in C \tag{1.2}
\end{equation*}
$$

In the case of $F \equiv 0$, this problem (1.1) reduces to the variational inequality problem(VIP), which is to find $z \in C$ such that

$$
\begin{equation*}
\text { VIP: }\langle A z, y-z\rangle \geq 0, \forall y \in C \tag{1.3}
\end{equation*}
$$

[^0]Denote the set of solutions of GEP by Ω, the set of solutions of EP by $E P(F)$ and the set of solutions of VIP by $V I(C, A)$. The problem (1.1) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative games and others; see, for instance, [1]. Recall that a mapping $T: C \rightarrow C$ is said to be asymptotically k-strictly pseudo-contractive (The class of asymptotically k-strictly pseudo-contractive mappings was first introduced in Hilbert spaces by [7].) if there exists a sequence $\left\{k_{n}\right\} \subset[1,+\infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that there exists $k \in[0,1)$ such that

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\|^{2} \leq k_{n}^{2}\|x-y\|^{2}+k\left\|\left(I-T^{n}\right) x-\left(I-T^{n}\right) y\right\|^{2}, \tag{1.4}
\end{equation*}
$$

for all $x, y \in C$ and $n \in Z^{+}$.
Note that the class of asymptotically k-strict pseudo-contractions strictly includes the class of asymptotically nonexpansive mappings [4] which are mappings T on C such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|, \quad \forall x, y \in C
$$

where the sequence $\left\{k_{n}\right\}$ in $[1,+\infty)$ satisfies $\lim _{n \rightarrow \infty} k_{n}=1$. That is, T is asymptotically nonexpansive if and only if T is asymptotically 0 -strictly pseudocontractive.

Recall that a mapping $T: C \rightarrow C$ is said to be a k-strict pseudo-contraction if there exists a constant $0 \leq k<1$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in C . \tag{1.5}
\end{equation*}
$$

Note that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings which are mappings T on C such that

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C .
$$

That is, T is nonexpansive if and only if T is 0 -strict pseudo-contractive.
The set of fixed points of T is denoted by $F(T)$. Many iterative methods for finding a common element of the set of solutions of the equilibrium problem(EP) or the variational inequality problem(VIP) and the set of fixed points of a nonexpansive mapping have been extensively investigated by many authors(see, e.g., [2],[5],[9],[11],[12]). However iterative methods for finding a common element of the set of solutions of the generalized equilibrium problem(GEP) and the set of common fixed points of a finite family of asymptotically k-strict pseudo-contractions are rarely studied.

Recently, Takahashi and Takahashi [10] introduced an iterative method for finding a common element of the set of solutions of the generalized equilibrium problem(GEP) and the set of fixed points of a nonexpansive mapping. More precisely, they proved the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $F: C \times C \rightarrow R$ be a bifunction satisfying (A1)-(A4). Let A be an
α-inverse-strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that $F(S) \bigcap \Omega \neq \emptyset$. Let $u \in C$ and $x_{1} \in C$ and let $\left\{z_{n}\right\} \subset C$ and $\left\{x_{n}\right\} \subset C$ be sequences generated by

$$
\left\{\begin{array}{l}
F\left(z_{n}, y\right)+\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{\lambda_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S\left[\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}\right], \quad \forall n \in N
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset[0,1],\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset[0,2 \alpha]$ satisfy

$$
\begin{gathered}
0<c \leq \beta_{n} \leq d<1, \quad 0<a \leq \lambda_{n} \leq b<2 \alpha \\
\lim _{n \rightarrow \infty} \alpha_{n}=0 \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty
\end{gathered}
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $z=P_{F(S) \cap \Omega} u$, where $P_{F(S) \cap \Omega}$ is the metric projection from C onto $F(S) \bigcap \Omega$.

Very recently, X.L.Qin et al.[8] introduced the following algorithm for asymptotically k-strict pseudo-contractions.

Let $x_{0} \in C$ and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a sequence in $(0,1)$. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is generated by the following way:

$$
\left\{\begin{aligned}
x_{1} & =\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) T_{1} x_{0} \\
x_{2} & =\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) T_{2} x_{1} \\
\cdots & \\
x_{N} & =\alpha_{N-1} x_{N-1}+\left(1-\alpha_{N-1}\right) T_{N} x_{N-1} \\
x_{N+1} & =\alpha_{N} x_{N}+\left(1-\alpha_{N}\right) T_{1}^{2} x_{N}, \\
\cdots & \\
x_{2 N} & =\alpha_{2 N-1}+\left(1-\alpha_{2 N-1}\right) T_{N}^{2} x_{2 N-1}, \\
x_{2 N+1} & =\alpha_{2 N}+\left(1-\alpha_{2 N}\right) T_{1}^{3} x_{2 N} \\
\cdots &
\end{aligned}\right.
$$

Since, for each $n \geq 1$, it can be written as $n=(h-1) N+i$, where $i=i(n) \in$ $\{1,2, \ldots N\}, h=h(n) \geq 1$ is a positive integer and $h(n) \rightarrow \infty$ as $n \rightarrow \infty$. Hence the above table can be rewritten in the following compact form:

$$
\begin{equation*}
x_{n}=\alpha_{n-1} x_{n-1}+\left(1-\alpha_{n-1}\right) T_{i(n)}^{h(n)} x_{n-1}, \quad \forall n \geq 0 \tag{1.6}
\end{equation*}
$$

They proved a weak convergence theorem for a finite family of asymptotically k-strict pseudo-contractions by algorithm (1.6) in the framework of Hilbert spaces.

Motivated and inspired by these facts, we introduce an iteration scheme for finding a common element of the set of solutions of the generalized equilibrium problem(GEP) and the set of common fixed points of a finite family of asymptotically k-strict pseudo-contractions in Hilbert spaces. We obtain weak and strong convergence theorems.

2. Preliminaries

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. We write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to $x . x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x. We denote by Z^{+}and R the sets of positive integers and real numbers, respectively. For any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\| \quad \forall y \in C
$$

Such a P_{C} is called the metric projection of H onto C. It is known that P_{C} is nonexpansive and satisfies the following property:

$$
\begin{equation*}
\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2}, \quad \forall x \in H, y \in C \tag{2.1}
\end{equation*}
$$

Furthermore, for $x \in H$ and $u \in C$,

$$
\begin{equation*}
u=P_{C} x \Leftrightarrow\langle x-u, u-y\rangle \geq 0, \forall y \in C . \tag{2.2}
\end{equation*}
$$

A mapping $A: C \rightarrow H$ is called inverse-strongly monotone if there exists $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \forall x, y \in C
$$

Such a mapping A is also called α-inverse-strongly monotone. If A is an α -inverse-strongly monotone mapping of C to H, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous. We also have that for all $x, y \in C$ and $\lambda>0$,

$$
\begin{align*}
\|(I-\lambda A) x-(I-\lambda A) y\|^{2} & =\|(x-y)-\lambda(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} . \tag{2.3}
\end{align*}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda A$ is a nonexpansive mapping of C into H.
A mapping $T: C \rightarrow C$ is said to be semi-compact, if for any sequence $\left\{x_{n}\right\}$ in C such that $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges strongly to $x^{*} \in C$. A mapping $T: C \rightarrow C$ is said to be uniformly L-Lipschitzian, if there exists some $L>0$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|, \quad \forall x, y \in C \text { and } \forall n \in Z^{+}
$$

Lemma 2.1. ([1], [3]) Let C be a nonempty closed convex subset of H and let F be a bifunction from $C \times C$ into R satisfying (A1), (A2), (A3) and (A4). Then, for any $r>0$ and $x \in H$, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C
$$

Further, if $T_{r} x=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}$, then the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is firmly nonexpansive, i.e.,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle, \forall x, y \in H
$$

(3) $F\left(T_{r}\right)=E P(F)$; (4) $E P(F)$ is closed and convex.

Lemma 2.2. There holds the identity in a Hilbert space H :

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$.
Lemma 2.3. ([13])Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of nonnegative real numbers satisfying the inequality

$$
a_{n+1} \leq a_{n}+b_{n} \quad \text { for all } n \geq 1
$$

If $\sum_{n=1}^{\infty} b_{n}<\infty$, then $\lim _{n \rightarrow \infty} a_{n}$ exists.
Lemma 2.4. ([6]) Let H be a real Hilbert space, C a nonempty subset of H and $T: C \rightarrow C$ be a k-strictly asymptotically pseudo-contractive mapping. Then T is uniformly L-Lipschitzian.

Lemma 2.5. ([8])Let H be a real Hilbert space, C a nonempty closed convex subset of H and $T: C \rightarrow C$ be a k-strictly asymptotically pseudo-contractive mapping. Then the fixed point set $F(T)$ of T is closed and convex so that the projection $P_{F(T)}$ is well defined.

Lemma 2.6. ([8])Let $N \geq 1$ be an integer. Let, for each $1 \leq i \leq N, T_{i}$: $C \rightarrow C$ be a s_{i}-strictly asymptotically pseudocontractive mapping for some $0 \leq s_{i}<1$ with a sequence $\left\{k_{n, i}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty} k_{n, i}=1$, then there exist a constant $s=\max \left\{s_{i}: 1 \leq i \leq N\right\}$ and a sequence $\left\{k_{n}\right\}=\max \left\{k_{n, i}\right.$: $1 \leq i \leq N\}$ such that

$$
\left\|T_{i}^{n} x-T_{i}^{n} y\right\|^{2} \leq k_{n}^{2}\|x-y\|^{2}+s\left\|\left(I-T_{i}^{n}\right) x-\left(I-T_{i}^{n}\right) y\right\|^{2}
$$

for all $1 \leq i \leq N$, where $\lim _{n \rightarrow \infty} k_{n}=1$.
Lemma 2.7. ([6])Let H be a real Hilbert space. Let C be a nonempty closed convex subset of H and $T: C \rightarrow C$ be a k-strictly asymptotically pseudocontractive mapping for some $0 \leq k<1$ with a sequence $\left\{k_{n}\right\}$ such that $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$ and the fixed points set of T is nonempty. Then $(I-T)$ is demiclosed at zero.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $F: C \times C \rightarrow R$ be a bifunction satisfying (A1)-(A4). Let A be an α-inverse-strongly monotone mapping of C into H and let $N \geq 1$ be an integer. Let, for each $1 \leq i \leq N, T_{i}: C \rightarrow C$ be an asymptotically s_{i}-strictly pseudo-contractive mapping for some $0 \leq s_{i}<1$ and a sequence $\left\{k_{n, i}\right\}$ such that $\sum_{n=0}^{\infty}\left(k_{n, i}-1\right)<\infty$. Let $s=\max \left\{s_{i}: 1 \leq i \leq N\right\}$ and
$\left\{k_{n}\right\}=\max \left\{k_{n, i}: 1 \leq i \leq N\right\}$. Assume that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \bigcap \Omega \neq \emptyset$. For any $x_{0} \in C$, define the following sequence $\left\{x_{n}\right\}$:

$$
\left\{\begin{array}{l}
y_{n-1}=\alpha_{n-1} x_{n-1}+\left(1-\alpha_{n-1}\right) T_{i(n)}^{h(n)} x_{n-1}, \tag{3.1}\\
x_{n} \in C \text { such that } \\
F\left(x_{n}, y\right)+\left\langle A y_{n-1}, y-x_{n}\right\rangle+\frac{1}{\lambda_{n-1}}\left\langle y-x_{n}, x_{n}-y_{n-1}\right\rangle \geq 0, \forall y \in C, \quad n \in Z^{+}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ satisfy
$B 1: k+\epsilon \leq \alpha_{n} \leq 1-\epsilon$, for all $n \geq 0$ and some $\epsilon \in(0,1)$;
$B 2: \lambda_{n} \in[a, b]$ for some $0<a<b<2 \alpha$. Then $\left\{x_{n}\right\}$ converges weakly to $z \in F$, where $z=\lim _{n \rightarrow \infty} P_{F} x_{n}$. Further, if one of $T_{1}, T_{2}, \ldots T_{N}$ is completely continuous, then $\left\{x_{n}\right\}$ converges strongly to $z \in F$. Again, if one of $T_{1}, T_{2}, \ldots T_{N}$ is semi-compact, then $\left\{x_{n}\right\}$ also converges strongly to $z \in F$.

Proof. Note that x_{n} can be rewritten as $x_{n}=T_{\lambda_{n-1}}\left(y_{n-1}-\lambda_{n-1} A y_{n-1}\right)$ for each $n \in Z^{+}$. Let $p \in F$. Since $p=T_{\lambda_{n-1}}\left(p-\lambda_{n-1} A p\right)$, then, by Lemma 2.1 and (2.3), we have $\left\|x_{n}-p\right\| \leq\left\|y_{n-1}-p\right\|$. Using (3.1) and lemma 2.2, we have

$$
\begin{align*}
\left\|y_{n-1}-p\right\|^{2} & =\left\|\alpha_{n-1}\left(x_{n-1}-p\right)+\left(1-\alpha_{n-1}\right)\left(T_{i(n)}^{h(n)} x_{n-1}-p\right)\right\|^{2} \\
& =\alpha_{n-1}\left\|x_{n-1}-p\right\|^{2}+\left(1-\alpha_{n-1}\right)\left\|T_{i(n)}^{h(n)} x_{n-1}-p\right\|^{2} \\
& -\alpha_{n-1}\left(1-\alpha_{n-1}\right)\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2} \\
& \leq \alpha_{n-1}\left\|x_{n-1}-p\right\|^{2}-\alpha_{n-1}\left(1-\alpha_{n-1}\right)\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2} \\
& +\left(1-\alpha_{n-1}\right)\left(k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}+s\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2}\right) \\
& \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left(1-\alpha_{n-1}\right)\left(\alpha_{n-1}-s\right)\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2} \\
& \leq\left(1+\left(k_{h(n)}^{2}-1\right)\right)\left\|x_{n-1}-p\right\|^{2}, \tag{3.2}
\end{align*}
$$

and so,

$$
\begin{align*}
& \left\|x_{n}-p\right\|^{2} \leq\left\|y_{n-1}-p\right\|^{2} \leq\left(1+\left(k_{h(n)}^{2}-1\right)\right)\left\|x_{n-1}-p\right\|^{2} \\
& \leq \prod_{i=1}^{n}\left(1+\left(k_{h(i)}^{2}-1\right)\right)\left\|x_{0}-p\right\|^{2} \tag{3.3}\\
& \leq e^{\sum_{i=1}^{n}\left(k_{h(i)}^{2}-1\right)}\left\|x_{0}-p\right\|^{2} .
\end{align*}
$$

Since $\sum_{n=0}^{\infty}\left(k_{n, i}-1\right)<\infty$, we have $\sum_{n=0}^{\infty}\left(k_{n}-1\right)<\infty$ and hence $\sum_{n=0}^{\infty}\left(k_{h(n)}^{2}-1\right)<\infty$, then $\left\{x_{n}\right\}$ is bounded. It implies that there exists a constant $M>0$ such that $\left\|x_{n}-p\right\|^{2} \leq M$ for all $n \in Z^{+}$. So,

$$
\left\|x_{n}-p\right\|^{2} \leq\left\|x_{n-1}-p\right\|^{2}+\left(k_{h(n)}^{2}-1\right) M .
$$

EQUILIBRIUM PROBLEMS AND ASYMPTOTICALLY STRICT PSEUDO-CONTRACTIOBOS
It follows from lemma 2.3 that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. By (2.3) and (3.2), we have

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} & \leq\left\|y_{n-1}-p\right\|^{2}+\lambda_{n-1}\left(\lambda_{n-1}-2 \alpha\right)\left\|A y_{n-1}-A p\right\|^{2} \\
& \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left(1-\alpha_{n-1}\right)\left(\alpha_{n-1}-s\right)\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2} \\
& +\lambda_{n-1}\left(\lambda_{n-1}-2 \alpha\right)\left\|A y_{n-1}-A p\right\|^{2} .
\end{aligned}
$$

Hence,

$$
\left(1-\alpha_{n-1}\right)\left(\alpha_{n-1}-s\right)\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2} \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}
$$

and

$$
-\lambda_{n-1}\left(\lambda_{n-1}-2 \alpha\right)\left\|A y_{n-1}-A p\right\|^{2} \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}
$$

It follows from $B 1$ and $B 2$ that

$$
\begin{equation*}
\epsilon^{2}\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|^{2} \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a(2 \alpha-b)\left\|A y_{n-1}-A p\right\|^{2} \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2} \tag{3.5}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$ yields that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|A y_{n-1}-A p\right\|=0 \tag{3.6}
\end{equation*}
$$

Using (3.1), we have

$$
\begin{equation*}
\left\|y_{n-1}-x_{n-1}\right\|=\left(1-\alpha_{n-1}\right)\left\|T_{i(n)}^{h(n)} x_{n-1}-x_{n-1}\right\| \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Using lemma 2.1 and (3.1), we have

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} & =\left\|T_{\lambda_{n-1}}\left(y_{n-1}-\lambda_{n-1} A y_{n-1}\right)-T_{\lambda_{n-1}}\left(p-\lambda_{n-1} A p\right)\right\|^{2} \\
& \leq\left\langle\left(y_{n-1}-\lambda_{n-1} A y_{n-1}\right)-\left(p-\lambda_{n-1} A p\right), x_{n}-p\right\rangle \\
& =\frac{1}{2}\left(\left\|\left(y_{n-1}-\lambda_{n-1} A y_{n-1}\right)-\left(p-\lambda_{n-1} A p\right)\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(y_{n-1}-\lambda_{n-1} A y_{n-1}\right)-\left(p-\lambda_{n-1} A p\right)-\left(x_{n}-p\right)\right\|^{2}\right) \\
& \leq \frac{1}{2}\left(\left\|y_{n-1}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|\left(y_{n-1}-x_{n}\right)-\lambda_{n-1}\left(A y_{n-1}-A p\right)\right\|^{2}\right) \\
& =\frac{1}{2}\left(\left\|y_{n-1}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|y_{n-1}-x_{n}\right\|^{2}\right. \\
& \left.-\lambda_{n-1}^{2}\left\|A y_{n-1}-A p\right\|^{2}+2 \lambda_{n-1}\left\langle y_{n-1}-x_{n}, A y_{n-1}-A p\right\rangle\right),
\end{aligned}
$$

so, we have
$\left\|x_{n}-p\right\|^{2} \leq\left\|y_{n-1}-p\right\|^{2}-\left\|y_{n-1}-x_{n}\right\|^{2}-\lambda_{n-1}^{2}\left\|A y_{n-1}-A p\right\|^{2}+2 \lambda_{n-1}\left\langle y_{n-1}-x_{n}, A y_{n-1}-A p\right\rangle$.
Then, from (3.2) and (3.8), we have
$\left\|x_{n}-p\right\|^{2} \leq k_{h(n)}^{2}\left\|x_{n-1}-p\right\|^{2}-\left\|y_{n-1}-x_{n}\right\|^{2}-\lambda_{n-1}^{2}\left\|A y_{n-1}-A p\right\|^{2}+2 \lambda_{n-1}\left\langle y_{n-1}-x_{n}, A y_{n-1}-A p\right\rangle$.
So, we have
$\left\|y_{n-1}-x_{n}\right\|^{2} \leq\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}+\left(k_{h(n)}^{2}-1\right)\left\|x_{n-1}-p\right\|^{2}+2 \lambda_{n-1}\left\langle y_{n-1}-x_{n}, A y_{n-1}-A p\right\rangle$.
Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty}\left\|A y_{n-1}-A p\right\|=0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n-1}-x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

It follows from (3.7) and (3.9) that

$$
\begin{equation*}
\left\|x_{n}-x_{n-1}\right\| \leq\left\|x_{n}-y_{n-1}\right\|+\left\|y_{n-1}-x_{n-1}\right\| \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.10}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n}\right\| & \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+\left\|T_{i(n)}^{h(n)} x_{n-1}-T_{i(n)}^{h(n)} x_{n}\right\| \\
& \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+L\left\|x_{n-1}-x_{n}\right\|
\end{aligned}
$$

Thus, combining (3.6) with (3.10) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

On the other hand, it follows from (3.10) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+j}\right\|=0, \quad \forall j=1,2, \ldots N \tag{3.12}
\end{equation*}
$$

Since, for any positive integer $n>N$, it can be written as $n=(h(n)-1) N+i(n)$, where $i(n) \in\{1,2, \ldots N\}$, observe that

$$
\begin{align*}
\left\|x_{n-1}-T_{n} x_{n-1}\right\| & \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+\left\|T_{i(n)}^{h(n)} x_{n-1}-T_{n} x_{n-1}\right\| \\
& \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+\left\|T_{i(n)}^{h(n)} x_{n-1}-T_{i(n)} x_{n-1}\right\| \\
& \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+L\left\|T_{i(n)-1}^{h(n)} x_{n-1}-x_{n-1}\right\| \\
& \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+L\left(\left\|T_{i(n)}^{h(n)-1} x_{n-1}-T_{i(n-N)}^{h(n)-1} x_{n-N}\right\|\right. \\
& \left.+\left\|T_{i(n-N)}^{h(n)-1} x_{n-N}-x_{(n-N)-1}\right\|+\left\|x_{(n-N)-1}-x_{n-1}\right\|\right) . \tag{3.13}
\end{align*}
$$

Since, for each $n>N, n=(h(n)-1) N+i(n)$, we have $n-N=(h(n)-$ $1-1) N+i(n)=(h(n-N)-1) N+i(n-N)$, that is $h(n-N)=h(n)-1$, $i(n-N)=i(n)$. Observe that

$$
\begin{equation*}
\left\|T_{i(n)}^{h(n)-1} x_{n-1}-T_{i(n-N)}^{h(n)-1} x_{n-N}\right\|=\left\|T_{i(n)}^{h(n)-1} x_{n-1}-T_{i(n)}^{h(n)-1} x_{n-N}\right\| \leq L\left\|x_{n-1}-x_{n-N}\right\| \tag{3.14}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|T_{i(n-N)}^{h(n)-1} x_{n-N}-x_{(n-N)-1}\right\| & \leq\left\|T_{i(n-N)}^{h(n)-1} x_{n-N}-T_{i(n-N)}^{h(n-N)} x_{(n-N)-1}\right\| \\
& +\left\|T_{i(n-N)}^{h(n-N)} x_{(n-N)-1}-x_{(n-N)-1}\right\| \\
& \leq L\left\|x_{n-N}-x_{(n-N)-1}\right\|+\left\|T_{i(n-N)}^{h(n-N)} x_{(n-N)-1}-x_{(n-N)-1}\right\| . \tag{3.15}
\end{align*}
$$

Substituting (3.14) and (3.15) into (3.13), we can obtain

$$
\begin{aligned}
\left\|x_{n-1}-T_{n} x_{n-1}\right\| & \leq\left\|x_{n-1}-T_{i(n)}^{h(n)} x_{n-1}\right\|+L\left(L\left\|x_{n-1}-x_{n-N}\right\|+L\left\|x_{n-N}-x_{(n-N)-1}\right\|\right. \\
& \left.+\left\|T_{i(n-N)}^{h(n-N)} x_{(n-N)-1}-x_{(n-N)-1}\right\|+\left\|x_{(n-N)-1}-x_{n-1}\right\|\right) .
\end{aligned}
$$

It follows from (3.6) and (3.12) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n-1}-T_{n} x_{n-1}\right\|=0 \tag{3.16}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
\left\|x_{n}-T_{n} x_{n}\right\| & \leq\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{n} x_{n-1}\right\|+\left\|T_{n} x_{n-1}-T_{n} x_{n}\right\| \\
& \leq(1+L)\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-T_{n} x_{n-1}\right\| .
\end{aligned}
$$

From (3.10) and (3.16), we can easily see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

On the other hand, from (3.12) and (3.17), we obtain that

$$
\begin{aligned}
\left\|x_{n}-T_{n+j} x_{n}\right\| & \leq\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{n+j} x_{n+j}\right\|+\left\|T_{n+j} x_{n+j}-T_{n+j} x_{n}\right\| \\
& \leq(1+L)\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{n+j} x_{n+j}\right\| \rightarrow 0, \text { as } n \rightarrow \infty,
\end{aligned}
$$

for any $j \in\{1,2, \ldots, N\}$. This gives that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0, \quad \forall l \in\{1,2, \ldots, N\} \tag{3.18}
\end{equation*}
$$

Noticing that $\left\{x_{n}\right\}$ is bounded, we obtain that there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup w \in C$. By Lemma 2.7, we have $w \in \bigcap_{l=1}^{N} F\left(T_{l}\right)$. Let us show $w \in \Omega$. Since $x_{n}=T_{\lambda_{n-1}}\left(y_{n-1}-\lambda_{n-1} A y_{n-1}\right)$, for any $y \in C$ we have

$$
F\left(x_{n}, y\right)+\left\langle y-x_{n}, A y_{n-1}\right\rangle+\frac{1}{\lambda_{n-1}}\left\langle y-x_{n}, x_{n}-y_{n-1}\right\rangle \geq 0 .
$$

From (A2), we also have

$$
\begin{equation*}
\left\langle y-x_{n}, A y_{n-1}\right\rangle+\frac{1}{\lambda_{n-1}}\left\langle y-x_{n}, x_{n}-y_{n-1}\right\rangle \geq F\left(y, x_{n}\right) \tag{3.19}
\end{equation*}
$$

Put $z_{t}=t y+(1-t) w$ for all $t \in(0,1]$ and $y \in C$. Then, we have $z_{t} \in C$. So, from (3.19) we have

$$
\begin{aligned}
\left\langle z_{t}-x_{n}, A z_{t}\right\rangle & \geq\left\langle z_{t}-x_{n}, A z_{t}\right\rangle-\left\langle z_{t}-x_{n}, A y_{n-1}\right\rangle \\
& -\left\langle z_{t}-x_{n}, \frac{x_{n}-y_{n-1}}{\lambda_{n-1}}\right\rangle+F\left(z_{t}, x_{n}\right) \\
& =\left\langle z_{t}-x_{n}, A z_{t}-A x_{n}\right\rangle+\left\langle z_{t}-x_{n}, A x_{n}-A y_{n-1}\right\rangle \\
& -\left\langle z_{t}-x_{n}, \frac{x_{n}-y_{n-1}}{\lambda_{n-1}}\right\rangle+F\left(z_{t}, x_{n}\right) .
\end{aligned}
$$

Since $\left\|x_{n}-y_{n-1}\right\| \rightarrow 0$, we have $\left\|A x_{n}-A y_{n-1}\right\| \rightarrow 0$. Further, from monotonicity of A, we have $\left\langle z_{t}-x_{n}, A z_{t}-A x_{n}\right\rangle \geq 0$. So, replacing n by n_{k}, from (A4) we have

$$
\begin{equation*}
\left\langle z_{t}-w, A z_{t}\right\rangle \geq F\left(z_{t}, w\right), \text { as } k \rightarrow \infty \tag{3.20}
\end{equation*}
$$

From (A1),(A4) and (3.20), we also have

$$
\begin{aligned}
0 & =F\left(z_{t}, z_{t}\right) \leq t F\left(z_{t}, y\right)+(1-t) F\left(z_{t}, w\right) \\
& \leq t F\left(z_{t}, y\right)+(1-t)\left\langle z_{t}-w, A z_{t}\right\rangle \\
& =t F\left(z_{t}, y\right)+(1-t) t\left\langle y-w, A z_{t}\right\rangle,
\end{aligned}
$$

and hence

$$
0 \leq F\left(z_{t}, y\right)+(1-t)\left\langle y-w, A z_{t}\right\rangle .
$$

Letting $t \rightarrow 0$, we have, for each $y \in C$,

$$
0 \leq F(w, y)+\langle y-w, A w\rangle
$$

This implies $w \in \Omega$. Therefore, $w \in F$. Define $u_{n}=P_{F} x_{n}$ for all $n \in Z^{+}$. Since $w \in F$, we have $\left\|u_{n}-x_{n}\right\| \leq\left\|w-x_{n}\right\|$, then, $\left\{u_{n}\right\}$ is bounded. From (3.3), we have

$$
\begin{equation*}
\left\|x_{n}-u_{n-1}\right\|^{2} \leq\left\|x_{n-1}-u_{n-1}\right\|^{2}+\left(k_{h(n)}^{2}-1\right)\left\|x_{n-1}-u_{n-1}\right\|^{2} \tag{3.21}
\end{equation*}
$$

By $u_{n}=P_{F} x_{n}$ and $u_{n-1}=P_{F} x_{n-1} \in F$, we have

$$
\left\|u_{n}-x_{n}\right\|^{2} \leq\left\|u_{n-1}-x_{n}\right\|^{2} \leq\left\|u_{n-1}-x_{n-1}\right\|^{2}+\left(k_{h(n)}^{2}-1\right) M^{*}
$$

where $M^{*}=\sup \left\{\left\|x_{n}-u_{n}\right\|^{2}, n \in Z^{+}\right\}$. Since $\sum_{n=1}^{\infty}\left(k_{h(n)}^{2}-1\right)<\infty$, it follows from Lemma 2.3 that $\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|$ exists. Again, using (3.21), for all $m \in Z^{+}$, we have

$$
\left\|x_{n+m}-u_{n-1}\right\|^{2} \leq \prod_{i=0}^{m} k_{h(n+i)}^{2}\left\|x_{n-1}-u_{n-1}\right\|^{2}
$$

From $u_{n+m}=P_{F} x_{n+m}$ and $u_{n-1}=P_{F} x_{n-1} \in F$, we have

$$
\begin{aligned}
\left\|u_{n-1}-u_{n+m}\right\|^{2} & \leq\left\|u_{n-1}-x_{n+m}\right\|^{2}-\left\|u_{n+m}-x_{n+m}\right\|^{2} \\
& \leq \prod_{i=0}^{m} k_{h(n+i)}^{2}\left\|x_{n-1}-u_{n-1}\right\|^{2}-\left\|u_{n+m}-x_{n+m}\right\|^{2} \\
& \leq e^{\sum_{i=0}^{m}\left(k_{h(n+i)}^{2}-1\right)}\left\|x_{n-1}-u_{n-1}\right\|^{2}-\left\|u_{n+m}-x_{n+m}\right\|^{2}
\end{aligned}
$$

Since $\sum_{n=1}^{\infty}\left(k_{h(n+i)}^{2}-1\right)<\infty$ and $\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|$ exists, we obtain that $\left\{u_{n}\right\}$ is a Cauchy sequence. Since F is closed, we have that $\left\{u_{n}\right\}$ converges strongly to $z \in F$. On the other hand, noticing that $w \in F$ and $u_{n}=P_{F} x_{n}$, we have

$$
\left\langle x_{n_{k}}-u_{n_{k}}, u_{n_{k}}-w\right\rangle \geq 0
$$

Letting $k \rightarrow \infty$, we have

$$
\langle w-z, z-w\rangle \geq 0
$$

Hence, $w=z$. Therefore, $\left\{x_{n}\right\}$ converges weakly to $z \in F$, where $z=\lim _{n \rightarrow \infty} P_{F} x_{n}$.
If one of $T_{1}, T_{2}, \ldots, T_{N}$ is completely continuous, without loss of generality, we may assume that $T_{l} x_{n} \rightarrow z, l \in\{1,2, \ldots, N\}$ as $n \rightarrow \infty$. By (3.18), we have $x_{n} \rightarrow z$.

If one of $T_{1}, T_{2}, \ldots, T_{N}$ is semi-compact, then, by (3.18), there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges strongly to $q \in C$. By using the same argument as the proof of $w \in F$, we can obtain $q \in F$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists, then $\left\{x_{n}\right\}$ converges strongly to q. Since $\left\{x_{n}\right\}$ converges weakly to $z \in F$, then we have $q=z$, where $z=\lim _{n \rightarrow \infty} P_{F} x_{n}$.

Remark 1. Taking $s_{i}=0$ in theorem 3.1 for each $i \in\{1,2, \ldots, N\}$, we can obtain weak and strong convergence theorems for the common element of the set of solutions of the generalized equilibrium problem(GEP) and the set of common fixed points of a finite family of asymptotically nonexpansive mappings in Hilbert spaces.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let $F: C \times C \rightarrow R$ be a bifunction satisfying (A1)-(A4). Let A be an α-inverse-strongly monotone mapping of C into H and let $N \geq 1$ be an integer. Let, for each $1 \leq i \leq N, T_{i}: C \rightarrow C$ be a s_{i}-strictly pseudo-contractive mapping for some $0 \leq s_{i}<1$. Let $s=\max \left\{s_{i}: 1 \leq i \leq N\right\}$. Assume that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \bigcap \Omega \neq \emptyset$. For any $x_{0} \in C$, define the following sequence $\left\{x_{n}\right\}$:
$\left\{\begin{array}{l}y_{n-1}=\alpha_{n-1} x_{n-1}+\left(1-\alpha_{n-1}\right) T_{i(n)} x_{n-1}, \\ x_{n} \in C \text { such that } \\ F\left(x_{n}, y\right)+\left\langle A y_{n-1}, y-x_{n}\right\rangle+\frac{1}{\lambda_{n-1}}\left\langle y-x_{n}, x_{n}-y_{n-1}\right\rangle \geq 0, \forall y \in C, \quad n \in Z^{+},\end{array}\right.$
where $\left\{\alpha_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ satisfy
$B 1: k+\epsilon \leq \alpha_{n} \leq 1-\epsilon$, for all $n \geq 0$ and some $\epsilon \in(0,1)$;
$B 2: \lambda_{n} \in[a, b]$ for some $0<a<b<2 \alpha$. Then $\left\{x_{n}\right\}$ converges weakly to $z \in F$, where $z=\lim _{n \rightarrow \infty} P_{F} x_{n}$. Further, if one of $T_{1}, T_{2}, \ldots T_{N}$ is completely continuous, then $\left\{x_{n}\right\}$ converges strongly to $z \in F$. Again, if one of $T_{1}, T_{2}, \ldots T_{N}$ is semi-compact, then $\left\{x_{n}\right\}$ also converges strongly to $z \in F$.

Proof. Taking $k_{n, i} \equiv 1$ for each $n \geq 0$ and $i \in\{1,2, \ldots, N\}$ in theorem 3.1, we can easily obtain the desired result.

Remark 2. Taking $s_{i}=0$ in Corollary 3.3 for each $i \in\{1,2, \ldots, N\}$, we can obtain weak and strong convergence theorems for the common element of the set of solutions of the generalized equilibrium problem(GEP) and the set of common fixed points of a finite family of nonexpansive mappings in Hilbert spaces. Corollary 3.3 generalize the result of Takahashi and Takahashi [10] from a nonexpansive mapping to a finite family of s_{i}-strict pseudo-contractions.

References

[1] E. Blum, and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994),123-145.
[2] J. Chen, L. Zhang, and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2007), 1450-1461.
[3] P.L. Combettes,and A. Hirstoaga, Equilibrium programming in Hilbert spaces,J. Nonlinear Convex Anal. 6 (2005), 117-136.
[4] K. Goebel, and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
[5] H. Iiduka, and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[6] T.H. Kim, and H.K. Xu, Convergence of the modified Manns iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008),2828-2836.
[7] L. Qihou, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal. 26 (1996), 1835-1842.
[8] X. Qin, Y. Cho, S.Kang, and M. Shang, A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal.70(2009),1902-1911.
[9] A. Tada, and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J. Optim. Theory Appl. 133 (2007),359-370.
[10] S. Takahashi, and W. Takahashi, Strong convergence theorems for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space,Nonlinear Anal. 69 (2008), 1025-1033.
[11] S. Takahashi, and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506515.
[12] W. Takahashi, and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[13] K.K. Tan, and H.K. Xu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.

YING LIU
College of Mathematics and Computer, Hebei University, No.180, Wusi eastRoad, Baoding, Hebei, China, 071002

E-mail address: ly_cyh2013@163.com

[^0]: Received December 12, 2012; Accepted April 18, 2013.
 2000 Mathematics Subject Classification. 47H05,47H09,47H06,47J25,47J05.
 Key words and phrases. Metric projection, semi-compactness, Generalized equilibrium problem, Asymptotically k-strict pseudo-contraction;, Uniformly L-Lipschitzian.

 This work was financially supported by the Natural Science Foundation of Hebei Province(A2011201053, A2012201054) and the National Natural Science Foundation of China(11101115).

