DOI QR코드

DOI QR Code

암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas

  • 이선우 (인하공업전문대학 전기정보과) ;
  • 이붕주 (남서울대학교 전자공학과)
  • Lee, Sunwoo (Dept. of Electrical Information, Inha Technical College) ;
  • Lee, Boong-Joo (Dept. of Electrical Engineering, Namseoul University)
  • 투고 : 2013.03.02
  • 심사 : 2013.05.07
  • 발행 : 2013.06.01

초록

Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

키워드

참고문헌

  1. Iijima S., "Helical microtubules of graphitic carbon", Nature, vol. 354, pp. 56, 1991. https://doi.org/10.1038/354056a0
  2. Arup R. Bhattacharyya, T.V. Sreekumar, Tao Liu, Satish Kumar, Lars M. Ericson, Robert H. Hauge, Richard E. Smalley, "Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite", Polymer, vol. 44, pp. 2373-2377, 2003. https://doi.org/10.1016/S0032-3861(03)00073-9
  3. K. Balasubramanian and M. Burghard, "Chemically Functionalized Carbon Nanotubes", Small, vol. 1, No. 2, pp. 180-192, 2005. https://doi.org/10.1002/smll.200400118
  4. R. Khare and S. Bose, "Carbon Nanotube Based Composites-A Review", J. Minerals & Mater. Char. & Eng., vol. 4, No. 1, pp. 31-46, 2005.
  5. S. A. C. Carabineiro, M. F. R. Pereira, J. N. Pereira, C. Caparros, V. Sencadas and S. Lanceros-Mendez, "Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidenefluoride) composites", Nanoscale Research Letters, vol. 6, pp. 1-5, 2011.
  6. Q. Zhao , M. Buongiorno Nardelli , W. Lu , and J. Bernholc, "Carbon Nanotube−Metal Cluster Composites: A New Road to Chemical Sensors?", Nano Lett., vol. 5, no. 5, pp. 847-851, 2005. https://doi.org/10.1021/nl050167w
  7. Yu G, Gong J, Wang S, Zhu D, He S, Zhu Z., "Etching effects of ethanol on multiwalled carbon nanotubes", Carbon, vol. 44, pp. 1218-1224, 2006. https://doi.org/10.1016/j.carbon.2005.10.050
  8. Osswald S, Havel M, Gogotsi Y., "Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy", J. Raman Spectrosc., vol. 38, pp. 728- 736, 2007. https://doi.org/10.1002/jrs.1686
  9. Li W, Bai Y, Zhang Y, Sun M, Cheng R, Xu X, et al., "Effect of hydroxyl radical on the structure of multiwalled carbon nanotubes", Synth. Met. vol. 155, pp. 509-515, 2005. https://doi.org/10.1016/j.synthmet.2005.07.346
  10. Lee YJ, Kim HH, Hatori H., "Effects of substitutional B on oxidation of carbon nanotubes in air and oxygen plasma", Carbon, vol. 42, pp. 1053-1056, 2004. https://doi.org/10.1016/j.carbon.2003.12.002
  11. Wei J, Ci L, Jiang B, Li Y, Zhang X, Zhu H, et al. "Preparation of highly pure double-walled carbon nanotubes". J. Mater. Chem., vol. 13, pp. 1340-1344, 2003. https://doi.org/10.1039/b300484h
  12. T.Y. Kim, K.R. Lee, K.Y. Eun, et al., The 2002 Korea-US Symposium on Phase Transformations of Nano-Materials Proceedings, 2002
  13. K. Tanaka, T. Yamamoto, K. Fukui, "The science and technology of carbon nanotubes", Elsevier Science Press, 1999.
  14. M. Chhowalla,a) K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, "Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition". J. Appl. Phys, vol. 90, no. 10, pp. 5308-5317, 2001. https://doi.org/10.1063/1.1410322

피인용 문헌

  1. Controllable Synthesis of Special Reed-Leaf-Like Carbon Nanostructures Using Copper Containing Catalytic Pyrolysis for High-Performance Field Emission vol.9, pp.3, 2019, https://doi.org/10.3390/app9030440