DOI QR코드

DOI QR Code

Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them

자외선 조사에 의한 고체 고분자 전해질의 제조와 이를 채용한 활성탄 수퍼커패시터의 전기화학적 특성

  • Won, Jung Ha (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Yong Joo (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Young-Gi (Korea Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Korea Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Jong Huy (Energy Storage Center, Korea Institute of Energy Research) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 원정하 (한밭대학교 화학생명공학과) ;
  • 김용주 (한밭대학교 화학생명공학과) ;
  • 이영기 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 김광만 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 김종휘 (한국에너지기술연구원 에너지저장센터) ;
  • 고장면 (한밭대학교 화학생명공학과)
  • Received : 2013.04.24
  • Accepted : 2013.05.30
  • Published : 2013.05.31

Abstract

Solid polymer electrolyte films are prepared by ultraviolet radiation in the mixtures of an ionic liquid salt (1-ethyl-3-methylimidazolium tetrafluoroborate, $EMIBF_4$) and solvent (acetonitrile (ACN) or propylene carbonate(PC)), and an oligomer (poly(ethylene glycol)diacrylate, PEGDA, 45-60 wt.%). Electrochemical properties of activated carbon supercapacitors adopting the solid polymer electrolyte films as a separator are also examined by cyclic voltammetry and impedance measurement techniques. As a result, the supercapacitor adopting the PEGDA as much as 45 wt.% exhibits a superior capacitance of $46Fg^{-1}$ at $20mVs^{-1}$. It seems that this is due to fast kinetics of ion conduction by sufficient film flexibility, which can be allowed by comparatively weak ultraviolet curing of small anount of the PEGDA.

이온성 액체 전해질염 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$)과 용매 acrylonitrile (ACN) 및 propylene carbonate (PC)와 각각 혼합한 용액에 poly(ethylene glycol)diacrylate (PEGDA)를 45-60 wt.% 첨가하고 자외선 조사를 통해 경화시켜 고체 고분자 전해질 필름을 제조하였다. 이 고체 고분자 전해질 필름을 분리막으로 채택하고 활성탄 전극을 사용하는 수퍼커패시터를 제조하여 그 전기화학적 특성을 사이클릭 볼타메트리와 임피던스 방법으로 조사하였다. 결과적으로 PEGDA를 45 wt.% 첨가하여 제조한 고체 고분자 전해질 필름을 채택한 경우가 스캔속도 $20mVs^{-1}$에서 $46Fg^{-1}$의 가장 우수한 축전용량을 나타내는데, 이것은 PEGDA의 저함량 때문에 상대적으로 자외선 경화가 약하게 진행되어 고분자 전해질 필름의 유연성이 충분히 확보되므로 필름 내 이온전도가 가장 활발히 진행될 수 있었기 때문이다.

Keywords

References

  1. H.-B. Gu, J.U. Kim, H.-W. Song, G.-C. Park, and B.-K. Park, 'Electrochemical Properties of Carbon Composite Electrode with Polymer Electrolyte for Electric Double-Layer Capacitor', Electrochim. Acta, 45, 1533 (2000). https://doi.org/10.1016/S0013-4686(99)00370-9
  2. P. Staiti, M. Minutoli, and F. Lufrano, 'All Solid Electric Double Layer Capacitors Based on Nafion Ionomer', Electrochim. Acta, 47, 2795 (2002). https://doi.org/10.1016/S0013-4686(02)00165-2
  3. A. Lewandowski, M. Zajder, E. Frackowiak, and F. Beguin, 'Supercapacitor Based on Activated Carbon and Polyethylene Oxide-KOH-H2O Polymer Electrolyte', Electrochim. Acta, 46, 2777 (2001). https://doi.org/10.1016/S0013-4686(01)00496-0
  4. R.L. Lavall, R.S. Borges, H.D.R. Calado, C. Welter, J.P.C. Trigueiro, J. Rieumont, B.R.A. Neves, and G.G. Silva, 'Solid state Double Layer Capacitor Based on Polyether Polymer Electrolyte Blend and Nanostructured Carbon Black Electrode Composites', J. Power Sources, 177, 652 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.060
  5. C.-P. Tien, W.-J. Liang, P.-L. Kuo, and H.-S. Teng, 'Electric Double Layer Capacitors with Gelled Polymer Electrolytes Based on Poly(ethylene oxide) Cured with Poly(propylene oxide) Diamines', Electrochim. Acta, 53, 4505 (2008). https://doi.org/10.1016/j.electacta.2008.01.021
  6. T. Osaka, X. Liu, and M. Nojima, 'Acetylene Black/ Poly(vinylidene fluoride) Gel Electrolyte Composite Electrode for an Electric Double-Layer Capacitor', J. Power Sources, 74, 122 (1998). https://doi.org/10.1016/S0378-7753(98)00043-3
  7. S.K. Tripathi, A. Kumar, and S.A. Hashmi, 'Electrochemical Redox Supercapacitors Using PVdF-HFP Based Gel Electrolytes and Polypyrrole as Conducting Polymer Electrode', Solid State Ionics, 177, 2979 (2006). https://doi.org/10.1016/j.ssi.2006.03.059
  8. S. Nohara, H. Wada, N. Furukawa, H. Inoue, M. Morita, and C. Iwakura, 'Electrochemical Characterization of New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte', Electrochim. Acta, 48, 749 (2003). https://doi.org/10.1016/S0013-4686(02)00744-2
  9. S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, and C. Iwakura, 'Hybrid Capacitor with Activated Carbon Electrode, Ni(OH)2 Electrode and Polymer Hydrogel Electrolyte', J. Power Sources, 157, 605 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.024
  10. K.-T. Lee and N.-L. Wu, 'Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte', J. Power Sources, 179, 430 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
  11. M.K. Parvez, I. In, J.M. Park, S.H. Lee, and S.R. Kim, 'Long-Term Stable Dye-Sensitized Solar Cells Based on UV Photo-Crosslinkable Poly(ethylene glycol) and poly(ethylene glycol) Diacrylate Based Electrolytes', Solar Energy Mater. Solar Cells, 95, 318 (2011). https://doi.org/10.1016/j.solmat.2010.04.018
  12. M.-K. Song, J.-Y. Cho, B.W. Cho, and H.-W. Rhee, 'Characterization of UV-Cured Gel Polymer Electrolytes for Rechargeable Lithium Batteries', J. Power Sources, 110, 209 (2002). https://doi.org/10.1016/S0378-7753(02)00258-6
  13. K.-S. Kum, M.-K. Song, Y.-T. Kim, H.-S. Kim, B.-W. Cho, and H.-W. Rhee, 'The Effect of Mixed Salts in Gel- Coated Polymer Electrolyte for Advanced Lithium Battery', Electrochim. Acta, 50, 285 (2004). https://doi.org/10.1016/j.electacta.2004.01.094
  14. M.-K. Song, Y.-T. Kim, J.-Y. Cho, B.W. Cho, B.N. Popov, and H.-W. Rhee, 'Composite Polymer Electrolytes Reinforced by Non-woven Fabrics', J. Power Sources, 125, 10 (2004). https://doi.org/10.1016/S0378-7753(03)00826-7
  15. C.-M. Yang, J.B. Ju, J.K. Lee, W.I. Cho, and B.W. Cho, 'Electrochemical Performances of Electric Double Layer Capacitor with UV-Cured Gel Polymer Electrolyte Based on Poly[(ethylene glycol)diacrylate]-Poly(vinylidene fluoride) Blend', Electrochim. Acta, 50, 1813 (2005). https://doi.org/10.1016/j.electacta.2004.08.033
  16. M. Ue and M. Takeda, 'Application of Ionic Liquids Based on 1-Ethyl-3-methylimidazolium Catio and Fluoroanions to Double-Layer Capacitors', J. Korean. Electrochem. Soc., 5, 192 (2002). https://doi.org/10.5229/JKES.2002.5.4.192
  17. M. Ue, M. Takeda, T. Takahashi, and M. Takehara, 'Ionic Liquids with Low Melting Points and Their Application to Double-Layer Capacitor Electrolytes', Electrochem. Solid- State Lett., 5, A119 (2002). https://doi.org/10.1149/1.1472255
  18. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, and Y. Ito, 'Application of Low-Viscosity Ionic Liquids to the Electrolyte of Double-Layer Capacitors', J. Electrochem. Soc., 150, A499 (2003). https://doi.org/10.1149/1.1559069
  19. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, 'Ionic Liquids for Hybrid Supercapacitors', Electrochem. Commun., 6, 566 (2004). https://doi.org/10.1016/j.elecom.2004.04.005
  20. A. Lewandowski and M. Galinski, 'Carbon-Ionic Liquid Double-Layer Capacitors', J. Phys. Chem. Solids, 65, 281 (2004). https://doi.org/10.1016/j.jpcs.2003.09.009
  21. J.N. Barisci, G.G. Wallace, D.R. MacFarlane, and R.H. Baughman, 'Investigation of Ionic Liquids as Electrolytes for Carbon Nanotube Electrodes', Electrochem. Commun., 6, 22 (2004). https://doi.org/10.1016/j.elecom.2003.09.015
  22. T. Sato, G. Masuda, and K. Tagaki, 'Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications', Electrochim. Acta, 49, 3603 (2004). https://doi.org/10.1016/j.electacta.2004.03.030
  23. W.-J. Cho, C.G. Yeom, B.C. Kim, K.M. Kim, J.M. Ko, and K.-H. Yu, 'Supercapacitive Properties of Activated Carbon Electrode in Organic Electrolytes Containing Single- and Double-Cationic Liquid Salts', Electrochim. Acta, 89, 807 (2013). https://doi.org/10.1016/j.electacta.2012.10.085
  24. Y.I. Kim, J.K. Yoon, J.S. Kwon, and J.M. Ko, 'Supercapacitive Properties of a Hybrid Capacitor Consisting of Co-Mn Oxide Cathode and Activated Acrbon Anode', Korean Chem. Eng. Res., 48, 440 (2010).
  25. M. Selvakumar and S. Pitchumani, 'Hybrid Supercapacitor Based on Poly(aniline-co-m-anilic acid) and Activated Carbon in Non-Aqueous Electrolyte', Korean J. Chem. Eng., 27, 977 (2010). https://doi.org/10.1007/s11814-010-0120-z
  26. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, and Y. Takasu, 'Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance', J. Phys. Chem. B, 109, 7330(2005). https://doi.org/10.1021/jp044252o

Cited by

  1. Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.550