Abstract
This paper introduces the Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filter (SP-SDW-MWF) for multi-microphone noise reduction and proposes a method to determine the speech distortion weights. The SP-SDW-MWF is known as a robust noise reduction algorithm against the error caused by the mismatch in microphones. The SP-SDW-MWF adopts weights which determine the amount of noise reduction at the expense of introducing speech distortion in the noise-suppressed speech. In this paper, we use the error of power spectral density between the estimated signal and the desired signal as the evaluation measure. Thus the a priori SNR is used to control the speech distortion weights in the frequency domain. In the experimental results, the proposed method yields better result in terms of MFCC distortion compared to the conventional method.
본 논문에서는 여러 개의 마이크를 이용하여 잡음을 제거하는 방법인 공간 필터로 전처리된 신호를 입력으로 하는 음성 왜곡 가중 다채널 위너 필터 (Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filter: SP-SDW-MWF)에 대해 소개하고, 가중치를 결정하는 방법을 제안한다. SP-SDW-MWF는 마이크로폰 어레이를 이용한 잡음 제거 알고리즘으로서 마이크로폰 불일치와 같은 오차에 강인한 것으로 알려져 있다. SP-SDW-MWF는 필터 계수를 최적화할 때 음성 왜곡과 잡음 제거에 대한 기준으로 나누어 가중치를 두고 있다. 이러한 가중치를 결정하기 위해, 본 논문에서는 전력 스펙트럼 밀도 오차를 평가 척도로 사용하여 마이크로폰으로부터 입력된 음성 신호와 잡음의 전력 스펙트럼 밀도의 비 (a priori SNR)를 이용하는 방법을 제안한다. 실험결과에서 나타난 바와 같이 a priori SNR에 따라 가변적인 가중치를 사용하는 것이 고정된 값을 가중치로 사용하는 것보다 향상된 성능을 보임을 알 수 있다.