Abstract
A method to classify a golf swing motion into 7 sections using a Kinect sensor and a fuzzy system is proposed. The inputs to the fuzzy logic are the positions of golf club and its head, which are extracted from the information of golfer's joint position and color information obtained by a Kinect sensor. The proposed method consists of three modules: one for extracting the joint's information, another for detecting and tracking of a golf club, and the other for classifying golf swing motions. The first module extracts the hand's position among the joint information provided by a Kinect sensor. The second module detects the golf club as well as its head with the Hough line transform based on the hand's coordinate. Using a fuzzy logic as a classification engine reduces recognition errors and, consequently, improves the performance of robust classification. From the experiments of real-time video clips, the proposed method shows the reliability of classification by 85.2%.
본 논문에서는 키넥트와 퍼지 시스템을 이용하여 골프 스윙 동작을 7가지 구간으로 분류하는 방법을 제안한다. 퍼지 논리의 입력으로 골프 클럽과 클럽의 헤드 위치를 사용하였으며 이 정보는 키넥트로부터 획득한 골퍼의 관절 정보와 컬러 영상 정보로부터 검출하였다. 제안하는 방법은 크게 신체 관절 추출 모듈, 골프 클럽 검출 및 헤드 추적 모듈, 골프 스윙 동작 분류 모듈로 구성되어 있다. 신체 관절 추출 모듈은 키넥트 센서로부터 검출되는 신체 관절 정보 중 골프 클럽의 검출을 위해 손의 좌표를 추출한다. 두 번째 모듈에서는 손의 좌표를 기준으로 허프 직선 변환 알고리즘을 사용하여 골프 클럽과 골프 클럽의 헤드를 검출한다. 마지막으로 인식 오류를 줄이고 동작별 인식 성능을 향상시키기 위해 퍼지 시스템을 적용하여 골프 스윙 동작을 분류하였다. 실시간 골프 스윙 영상에 대해 제안한 방법의 성능 평가를 시행하였고 제안한 방법은 평균 85.2%의 골프 스윙 동작 분류 신뢰도를 보여줌을 확인하였다.