DOI QR코드

DOI QR Code

Cytotoxic Mechanism of Docosahexaenoic Acid in Human Oral Cancer Cells

인체 구강암 세포주에서 Docosahexaenoic acid에 의한 세포독성 기전

  • Hong, Tae-Hwa (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Kim, Hoon (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Shin, Soyeon (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Jing, Kaipeng (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Jeong, Soyeon (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Lim, Hyun (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Yun, Donghyuk (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Jeong, Ki-Eun (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Lee, Myung-Ryul (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Park, Jong-Il (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Kweon, Gi-Ryang (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Park, Seung Kiel (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Hwang, Byung-Doo (Department of Biochemisty, College of Medicine, Chungnam National University) ;
  • Lim, Kyu (Department of Biochemisty, College of Medicine, Chungnam National University)
  • 홍태화 (충남대학교 의학전문대학원 생화학교실) ;
  • 김훈 (충남대학교 의학전문대학원 생화학교실) ;
  • 신소연 (충남대학교 의학전문대학원 생화학교실) ;
  • ;
  • 정소연 (충남대학교 의학전문대학원 생화학교실) ;
  • 임현 (충남대학교 의학전문대학원 생화학교실) ;
  • 윤동혁 (충남대학교 의학전문대학원 생화학교실) ;
  • 정기은 (충남대학교 의학전문대학원 생화학교실) ;
  • 이명렬 (충남대학교 의학전문대학원 생화학교실) ;
  • 박종일 (충남대학교 의학전문대학원 생화학교실) ;
  • 권기량 (충남대학교 의학전문대학원 생화학교실) ;
  • 박승길 (충남대학교 의학전문대학원 생화학교실) ;
  • 황병두 (충남대학교 의학전문대학원 생화학교실) ;
  • 임규 (충남대학교 의학전문대학원 생화학교실)
  • Received : 2013.02.19
  • Accepted : 2013.05.21
  • Published : 2013.05.30

Abstract

In the United States, about 40,000 new cases of oral cancer are diagnosed each year and nearly 7,800 patients died from it in 2012. Omega-3 polyunsaturated fatty acids have been found to have anticancer effects in a variety of cancer cell lines and animal models, but their effect in oral cancer remains unclear. This study was designed to examine the effect of docosahexaenoic acid (DHA, a kind of omega-3 fatty acid) on oral cancer cells and the molecular mechanism of its action. We found that exposure of squamous cell carcinoma-4 (SCC-4) and squamous cell carcinoma-9 (SCC-9) human oral cancer cells to DHA induced growth inhibition in a dose- and time-dependent manner. Meanwhile, in addition to the elevated levels of apoptotic markers, such as cleaved PARP, subG1 portion and TUNEL-positive nuclei, DHA led to autophagic vesicle formation and an increase in autophagic flux, indicating the involvement of both apoptosis and autophagy in the inhibitory effects of DHA on oral cancer cells. Further experiments revealed that the apoptosis and autophagy induced by DHA were linked to inhibition of mammalian target of rapamycin (mTOR) signaling by AKT inhibition and AMP-activated protein kinase (AMPK) activation in SCC-9 cells. Together, our results suggest that DHA induces apoptosis- and autophagy-associated cell death through the AMPK/AKT/mTOR signaling pathway in oral cancer cells. Thus, utilization of omega-3 fatty acids may represent a promising therapeutic approach for chemoprevention and treatment of human oral cancer.

오메가-3 지방산은 많은 암에서 세포독성을 나타낸다고 보고 되어 왔으나 구강암에 대한 연구는 전혀 없다. 이에 본 연구에서는 구강암세포에서 오메가-3 지방산 중 DHA의 세포독성 기전을 규명하여 다음과 같은 결과를 얻었다. DHA는 구강암 세포주 SCC-4 및 SCC-9의 증식을 농도 의존적으로 억제하였으며, FACS 분석, TUNEL assay 및 PARP cleavage 등에 의해 자가사멸을 유도함이 확인 되었다. 또한 DHA는 LC-3II 단백증가, GFP-LC-3 dot 형성 및 autophagic flux assay 등에 의해 자가포식도 유도됨이 규명되었다. SCC-9 세포에서 AMPK의 인산화는 DHA 에 의해 증가 하였으나, p-$AKT^{Thr308}$, p-$AKT^{Ser473}$ 및 mTOR단백양은 감소하였다. 이상의 결과로 DHA는 구강암세포에서 AMPK 활성증가 및 AKT 억제에 통한 mTOR 신호경로 차단에 따른 자가사멸 및 자가포식에 의해 세포독성을 나타낼 수 있음을 시사하며, 따라서 DHA는 구강암의 예방 및 치료에 유용하게 사용될 수 있으리라 생각된다.

Keywords

References

  1. Bartsch, H., Nair, J. and Owen, R. W. 1999. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis 20, 2209-2218. https://doi.org/10.1093/carcin/20.12.2209
  2. Bougnoux, P. 1999. n-3 polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care 2, 121-126. https://doi.org/10.1097/00075197-199903000-00005
  3. Calviello, G., Di Nicuolo, F., Gragnoli, S., Piccioni, E., Serini, S., Maggiano, N., Tringali, G., Navarra, P., Ranelletti, F. O. and Palozza, P. 2004. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25, 2303-2310. https://doi.org/10.1093/carcin/bgh265
  4. Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F. and Chu, S. C. 2006. Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. J Dent Res 85, 220-225. https://doi.org/10.1177/154405910608500303
  5. Choi, K. S. 2012. Autophagy and cancer. Exp Mol Med 44, 109-120. https://doi.org/10.3858/emm.2012.44.2.033
  6. Collett, E. D., Davidson, L. A., Fan, Y. Y., Lupton, J. R. and Chapkin, R. S. 2001. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol 280, C1066-1075.
  7. Davidson, L. A., Wang, N., Shah, M. S., Lupton, J. R., Ivanov, I. and Chapkin, R. S. 2009. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30, 2077-2084. https://doi.org/10.1093/carcin/bgp245
  8. Farago, N., Feher, L. Z., Kitajka, K., Das, U. N. and Puskas, L. G. 2011. MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes. Lipids Health Dis 10, 173. https://doi.org/10.1186/1476-511X-10-173
  9. Gago-Dominguez, M., Yuan, J. M., Sun, C. L., Lee, H. P. and Yu, M. C. 2003. Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study. Br J Cancer 89, 1686-1692. https://doi.org/10.1038/sj.bjc.6601340
  10. Ge, Y., Chen, Z., Kang, Z. B., Cluette-Brown, J., Laposata, M. and Kang, J. X. 2002. Effects of adenoviral gene transfer of C. elegans n-3 fatty acid desaturase on the lipid profile and growth of human breast cancer cells. Anticancer Res 22, 537-543.
  11. Hammamieh, R., Chakraborty, N., Miller, S. A., Waddy, E., Barmada, M., Das, R., Peel, S. A., Day, A. A. and Jett, M. 2007. Differential effects of omega-3 and omega-6 Fatty acids on gene expression in breast cancer cells. Breast Cancer Res Treat 101, 7-16. https://doi.org/10.1007/s10549-006-9269-x
  12. He, C. and Klionsky, D. J. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
  13. Jing, K. and Lim, K. 2012. Why is autophagy important in human diseases? Exp Mol Med 44, 69-72. https://doi.org/10.3858/emm.2012.44.2.028
  14. Jing, K., Song, K. S., Shin, S., Kim, N., Jeong, S., Oh, H. R., Park, J. H., Seo, K. S., Heo, J. Y., Han, J., Park, J. I., Han, C., Wu, T., Kweon, G. R., Park, S. K., Yoon, W. H., Hwang, B. D. and Lim, K. 2011. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7, 1348-1358. https://doi.org/10.4161/auto.7.11.16658
  15. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M. and Ohsumi, Y. 2000. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507-1513. https://doi.org/10.1083/jcb.150.6.1507
  16. Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D. K., Aliev, G., Askew, D. S., Baba, M., Baehrecke, E. H., Bahr, B. A., Ballabio, A., Bamber, B. A., Bassham, D. C., Bergamini, E., Bi, X., Biard-Piechaczyk, M., Blum, J. S., Bredesen, D. E., Brodsky, J. L., Brumell, J. H., Brunk, U. T., Bursch, W., Camougrand, N., Cebollero, E., Cecconi, F., Chen, Y., Chin, L. S., Choi, A., Chu, C. T., Chung, J., Clarke, P. G., Clark, R. S., Clarke, S. G., Clave, C., Cleveland, J. L., Codogno, P., Colombo, M. I., Coto-Montes, A., Cregg, J. M., Cuervo, A. M., Debnath, J., Demarchi, F., Dennis, P. B., Dennis, P. A., Deretic, V., Devenish, R. J., Di Sano, F., Dice, J. F., Difiglia, M., Dinesh-Kumar, S., Distelhorst, C. W., Djavaheri-Mergny, M., Dorsey, F. C., Droge, W., Dron, M., Dunn, W. A., Jr., Duszenko, M., Eissa, N. T., Elazar, Z., Esclatine, A., Eskelinen, E. L., Fesus, L., Finley, K. D., Fuentes, J. M., Fueyo, J., Fujisaki, K., Galliot, B., Gao, F. B., Gewirtz, D. A., Gibson, S. B., Gohla, A., Goldberg, A. L., Gonzalez, R., Gonzalez-Estevez, C., Gorski, S., Gottlieb, R. A., Haussinger, D., He, Y. W., Heidenreich, K., Hill, J. A., Hoyer-Hansen, M., Hu, X., Huang, W. P., Iwasaki, A., Jaattela, M., Jackson, W. T., Jiang, X., Jin, S., Johansen, T., Jung, J. U., Kadowaki, M., Kang, C., Kelekar, A., Kessel, D. H., Kiel, J. A., Kim, H. P., Kimchi, A., Kinsella, T. J., Kiselyov, K., Kitamoto, K., Knecht, E., Komatsu, M., Kominami, E., Kondo, S., Kovacs, A. L., Kroemer, G., Kuan, C. Y., Kumar, R., Kundu, M., Landry, J., Laporte, M., Le, W., Lei, H. Y., Lenardo, M. J., Levine, B., Lieberman, A., Lim, K. L., Lin, F. C., Liou, W., Liu, L. F., Lopez-Berestein, G., Lopez-Otin, C., Lu, B., Macleod, K. F., Malorni, W., Martinet, W., Matsuoka, K., Mautner, J., Meijer, A. J., Melendez, A., Michels, P., Miotto, G., Mistiaen, W. P., Mizushima, N., Mograbi, B., Monastyrska, I., Moore, M. N., Moreira, P. I., Moriyasu, Y., Motyl, T., Munz, C., Murphy, L. O., Naqvi, N. I., Neufeld, T. P., Nishino, I., Nixon, R. A., Noda, T., Nurnberg, B., Ogawa, M., Oleinick, N. L., Olsen, L. J., Ozpolat, B., Paglin, S., Palmer, G. E., Papassideri, I., Parkes, M., Perlmutter, D. H., Perry, G., Piacentini, M., Pinkas-Kramarski, R., Prescott, M., Proikas-Cezanne, T., Raben, N., Rami, A., Reggiori, F., Rohrer, B., Rubinsztein, D. C., Ryan, K. M., Sadoshima, J., Sakagami, H., Sakai, Y., Sandri, M., Sasakawa, C., Sass, M., Schneider, C., Seglen, P. O., Seleverstov, O., Settleman, J., Shacka, J. J., Shapiro, I. M., Sibirny, A., Silva-Zacarin, E. C., Simon, H. U., Simone, C., Simonsen, A., Smith, M. A., Spanel-Borowski, K., Srinivas, V., Steeves, M., Stenmark, H., Stromhaug, P. E., Subauste, C. S., Sugimoto, S., Sulzer, D., Suzuki, T., Swanson, M. S., Tabas, I., Takeshita, F., Talbot, N. J., Talloczy, Z., Tanaka, K., Tanida, I., Taylor, G. S., Taylor, J. P., Terman, A., Tettamanti, G., Thompson, C. B., Thumm, M., Tolkovsky, A. M., Tooze, S. A., Truant, R., Tumanovska, L. V., Uchiyama, Y., Ueno, T., Uzcategui, N. L., van der Klei, I., Vaquero, E. C., Vellai, T., Vogel, M. W., Wang, H. G., Webster, P., Wiley, J. W., Xi, Z., Xiao, G., Yahalom, J., Yang, J. M., Yap, G., Yin, X. M., Yoshimori, T., Yu, L., Yue, Z., Yuzaki, M., Zabirnyk, O., Zheng, X., Zhu, X. and Deter, R. L. 2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175. https://doi.org/10.4161/auto.5338
  17. Kobayashi, N., Barnard, R. J., Henning, S. M., Elashoff, D., Reddy, S. T., Cohen, P., Leung, P., Hong-Gonzalez, J., Freedland, S. J., Said, J., Gui, D., Seeram, N. P., Popoviciu, L. M., Bagga, D., Heber, D., Glaspy, J. A. and Aronson, W. J. 2006. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase- 2, and prostaglandin E2. Clin Cancer Res 12, 4662-4670. https://doi.org/10.1158/1078-0432.CCR-06-0459
  18. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., El-Deiry, W. S., Golstein, P., Green, D. R., Hengartner, M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nunez, G., Peter, M. E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B. and Melino, G. 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16, 3-11. https://doi.org/10.1038/cdd.2008.150
  19. Kromhout, D. 1990. The importance of N-6 and N-3 fatty acids in carcinogenesis. Med Oncol Tumor Pharmacother 7, 173-176.
  20. Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M. and Wolk, A. 2004. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79, 935-945.
  21. Lim, K., Han, C., Dai, Y., Shen, M. and Wu, T. 2009. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol Cancer Ther 8, 3046-3055. https://doi.org/10.1158/1535-7163.MCT-09-0551
  22. Lim, K., Han, C., Xu, L., Isse, K., Demetris, A. J. and Wu, T. 2008. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res 68, 553-560. https://doi.org/10.1158/0008-5472.CAN-07-2295
  23. Lipworth, L. 1995. Epidemiology of breast cancer. Eur J Cancer Prev 4, 7-30. https://doi.org/10.1097/00008469-199502000-00002
  24. Liu, G., Bibus, D. M., Bode, A. M., Ma, W. Y., Holman, R. T. and Dong, Z. 2001. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc Natl Acad Sci USA 98, 7510-7515. https://doi.org/10.1073/pnas.131195198
  25. McCabe, A. J., Wallace, J. M., Gilmore, W. S., McGlynn, H. and Strain, S. J. 2005. Docosahexaenoic acid reduces in vitro invasion of renal cell carcinoma by elevated levels of tissue inhibitor of metalloproteinase-1. J Nutr Biochem 16, 17-22. https://doi.org/10.1016/j.jnutbio.2004.07.006
  26. Meley, D., Bauvy, C., Houben-Weerts, J. H., Dubbelhuis, P. F., Helmond, M. T., Codogno, P. and Meijer, A. J. 2006. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281, 34870-34879. https://doi.org/10.1074/jbc.M605488200
  27. Minami, Y., Nishino, Y., Tsubono, Y., Tsuji, I. and Hisamichi, S. 2006. Increase of colon and rectal cancer incidence rates in Japan: trends in incidence rates in Miyagi Prefecture, 1959-1997. J Epidemiol 16, 240-248. https://doi.org/10.2188/jea.16.240
  28. Mukutmoni-Norris, M., Hubbard, N. E. and Erickson, K. L. 2000. Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil. Cancer Lett 150, 101-109. https://doi.org/10.1016/S0304-3835(99)00380-8
  29. Narayanan, B. A., Narayanan, N. K., Desai, D., Pittman, B. and Reddy, B. S. 2004. Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis 25, 2443-2449. https://doi.org/10.1093/carcin/bgh252
  30. Narayanan, B. A., Narayanan, N. K., Simi, B. and Reddy, B. S. 2003. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res 63, 972-979.
  31. Papandreou, I., Lim, A. L., Laderoute, K. and Denko, N. C. 2008. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15, 1572-1581. https://doi.org/10.1038/cdd.2008.84
  32. Rose, D. P. and Connolly, J. M. 1999. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83, 217-244. https://doi.org/10.1016/S0163-7258(99)00026-1
  33. Shin, S. Y., Kim, Y. J., Song, K. S., Jing, K., Kim, N. Y., Jeong, S. Y., Park, J. H., Seo, K. S., Heo, J. Y., Kwon, H. J., Park,J. I., Kweon, G. R., Yoon, W. H., Hwang, B. D, Lim, K. 2010. Mechanism of anti-invasive action of docosahexaenoic acid in SW480 human colon cancer cell. J Life Sci 20, 561-571. https://doi.org/10.5352/JLS.2010.20.4.561
  34. Siegel, R., Naishadham, D. and Jemal, A. 2012. Cancer statistics, 2012. CA Cancer J Clin 62, 10-29. https://doi.org/10.3322/caac.20138
  35. Song, K. S., Jing, K., Kim, J. S., Yun, E. J., Shin, S., Seo, K. S., Park, J. H., Heo, J. Y., Kang, J. X., Suh, K. S., Wu, T., Park, J. I., Kweon, G. R., Yoon, W. H., Hwang, B. D. and Lim, K. 2011. Omega-3-polyunsaturated fatty acids suppress pancreatic cancer cell growth in vitro and in vivo via downregulation of Wnt/Beta-catenin signaling. Pancreatology 11, 574-584. https://doi.org/10.1159/000334468
  36. Tevar, R., Jho, D. H., Babcock, T., Helton, W. S. and Espat, N. J. 2002. Omega-3 fatty acid supplementation reduces tumor growth and vascular endothelial growth factor expression in a model of progressive non-metastasizing malignancy. JPEN J Parenter Enteral Nutr 26, 285-289. https://doi.org/10.1177/0148607102026005285
  37. Xia, S. H., Wang, J. and Kang, J. X. 2005. Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion- related genes. Carcinogenesis 26, 779-784. https://doi.org/10.1093/carcin/bgi019
  38. Zhang, X., Liu, Y., Gilcrease, M. Z., Yuan, X. H., Clayman, G. L., Adler-Storthz, K. and Chen, Z. 2002. A lymph node metastatic mouse model reveals alterations of metastasis- related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer 95, 1663-1672. https://doi.org/10.1002/cncr.10837