DOI QR코드

DOI QR Code

Effect of Fermented Cudrania tricuspidata Fruit Extracts on the Generation of the Cytokines in Mouse Spleen Cells

발효 꾸지뽕(Cudrania tricuspidata) 열매 추출물이 마우스 비장세포의 cytokine 생성에 미치는 영향

  • Seo, Min Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kang, Byoung Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Park, Jeong Uck (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Min Jeong (Department of Biotechnology, Dong-A University) ;
  • Lee, Hye Hyeon (Department of Biotechnology, Dong-A University) ;
  • Kim, Nam Hee (Department of Microbiology, Kosin University College of Medicine) ;
  • Kim, Kwang Hyuk (Department of Microbiology, Kosin University College of Medicine) ;
  • Rhu, En Ju (Department of Cosmetology, Hanseo University) ;
  • Jeong, Yong Kee (Medi-Farm Industrialization Research Center, Dong-A University)
  • 서민정 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 강병원 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 박정욱 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 김민정 (동아대학교 생명공학과) ;
  • 이혜현 (동아대학교 생명공학과) ;
  • 김남희 (고신대학교 의학과) ;
  • 김광혁 (고신대학교 의학과) ;
  • 류은주 (한서대학교 피부미용학과) ;
  • 정영기 (동아대학교 Medi-Farm 산업화 연구사업단)
  • Received : 2013.04.08
  • Accepted : 2013.05.22
  • Published : 2013.05.30

Abstract

We investigated a physiological function by fermenting a medicinal mushroom, (Cudrania tricuspidata fruit). A fermentation using lactic acid bacteria and the extracts isolated from 70% ethanol fractionation was included in cultured mouse spleen cells for cytokine secretion. As a result, total polyphenol content improved by 47% by organic acid fermentation. This was regarded as immune activity in fermented C. tricuspidata fruits, as the levels of interleukin (IL)-2 and IL-4 secretion increased. In addition, when the extracts were treated with a stimulant lipopolysaccharide, the secretion of helper T (Th) 1 cytokines IL-2, IL-12, and tumor necrosis factor-${\alpha}$ was suppressed, while the secretion of Th2 cytokines IL-4, IL-5, IL-6, and IL-10 significantly increased. Therefore, this study suggests that fermentative C. tricuspidata fruit extracts can contribute to the suppression of cellular immune reactions induced by the expression of Th1 cells and activation of the expression of Th2 cells inducing humoral immune reactions associated with the antibody generation by B lymphocytes.

꾸지뽕(Cudrania tricuspidata) 열매의 면역증강 작용을 검토하기 위하여 유산균을 이용하여 발효한 후 70% 에탄올 추출하여 그 추출물을 마우스 비장세포에 작용한 후 분비되는 cytokine으로 면역활성을 조사하였다. 그 결과 발효에 의해 성분의 변화로 총 페놀함량을 측정한 결과 발효에 의해 폴리페놀 함량이 약 47% 증가하였으며, 면역활성에서는 발효 꾸지뽕 열매에서 cytokine IL-2와IL-4의 분비량이 증가하였다. 그리고 LPS 자극제와 함께 처리하였을 때, Th1 cell 유도 cytokine인 IL-2, IL-12, TNF-${\alpha}$의 분비는 억제되었으나, Th2 cell 유도 cytokine인 IL-4, IL-5, IL-6, IL-10의 분비량이 유의적으로 증가하였다. 이는 발효 꾸지뽕 나무 열매 추출물이 Th1 cell의 발현에 의해 유도되는 세포성 면역작용 반응은 억제하며, B 림프구에 의한 항체생성과 관련된 체액성 면역작용을 유도하는 Th2 cell의 발현을 활성화 하는 것으로 사료된다.

Keywords

References

  1. Ankathatti Munegowda, M., Xu, S., Freywald, A. and Xiang, J. 2012. CD4+ Th2 cells function alike effector Tr1 and Th1 cells through the deletion of a single cytokine IL-6 and IL-10 gene. Mol Immunol 51, 143-149. https://doi.org/10.1016/j.molimm.2012.02.120
  2. Bajpai, V., Sharma, A. and Baek, K. H. 2013. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 32, 582-590. https://doi.org/10.1016/j.foodcont.2013.01.032
  3. Beutler, B., Greenwald, D., Hulmes, J. D., Chang, M., Pan, Y. C., Mathison, J., Ulevitch, R. and Cerami, A. 1985. Identity oftumour necrosis factor and themacrophage-secreted factor cachectin. Nature 316, 552-554. https://doi.org/10.1038/316552a0
  4. Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N. and Williamson, B. 1975. An endotoxin-induced serum factorthat causes necrosis of tumors. Proc Natl Acad Sci USA 72, 3666-3670. https://doi.org/10.1073/pnas.72.9.3666
  5. Choi, S. R., You, D. H., Jang, I., Ahn, M. S., Song, E. J., Seo, S. Y., Choi, M. K., Kim, Y. S., Kim, M. K. and Choi, D. G. 2012. Cytotoxicity of methanol extracts from Cudrania tricuspidata Bureau. Korean J Medicinal Corp Sci 20, 153-158. https://doi.org/10.7783/KJMCS.2012.20.3.153
  6. Dubucquoi, S., Desreumaux, P., Janin, A., Klein, O., Goldman, M., Tavernier, J., Capron, A. and Capron, M. 1994. Interleukin 5 synthesis by eosinophils: association with granules and I mmunoglobulin-dependent secretion. J Exp Med 179, 703-708. https://doi.org/10.1084/jem.179.2.703
  7. Feng, Q., Torii, Y., Uchida, K., Nakamura, Y., Hara, Y., and Osawa, T. 2002. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 IAI in cell culture. J Agric Food Chem 50, 213-220. https://doi.org/10.1021/jf010875c
  8. Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richards]on, J., Schoenborn, M. A., Ahdieh, M., Johnson, L., Alderson, M. A., Watson, J. D., Anderson, D. M. and Giri, J. G., 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264, 965-968. https://doi.org/10.1126/science.8178155
  9. Han, S. K., Song, Y. S., Lee, J. S., Bang, J. K., Suh, S. J., Cho, J. Y., Moon, J. H. and Park, K. H. 2010. Changes of the chemical constituents and antioxidant activity during microbial fermented tea (Camellia sinensis L.) processing. Korean J Food Sci Technol 42, 21-26.
  10. Hano, Y., Matsumoto, Y., Sun, J. Y. and Nomura, T. 1990. Structures of three new isoprenylated xanthones, cudraxanthones E, F and G. Planta Med 56, 478-481. https://doi.org/10.1055/s-2006-961016
  11. Howard, B., Burrascano, M., McCallister, M., Chong, K., Gangavalli, R., Severinsson, L., Jolly, D. J., Darrow, T., Vervaert, C., Abdel-Wahab, Z., Siegler, H. F. and Barber, J. R. 1994. Retrovirus-mediated gene transfer of the human y-IFN gene: a therapy for cancer. Ann N Y Acad Sci 716, 167-187. https://doi.org/10.1111/j.1749-6632.1994.tb21711.x
  12. Jeong, C. H., Choi, G. N., Kim, J. H., Kwak, J. H., Heo, H. J., Shim, K. H., Cho, B. R., Bae, Y. I. and Choi, J. S. 2006. Anti-atheroclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg Med Chem Lett 16, 5580-5583. https://doi.org/10.1016/j.bmcl.2006.08.032
  13. Jeong, G. S., Lee, D. S. and Kim, Y. C. 2009. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Int Immunopharmacol 9, 241-246. https://doi.org/10.1016/j.intimp.2008.11.008
  14. Joo, H. Y. and Lim, K. T. 2009. Glycoprotein isolated from Cudrania tricuspidata Bureau inhibits iNO and COX-2 expression through modulation of NF-${\kappa}B$ in LPS-stimulated RAW 264.7 cells. Environ Toxicol Phar 27, 247-252. https://doi.org/10.1016/j.etap.2008.10.014
  15. Kang, D. H., Kim, J. W. and Youn, K. S. 2011. Antioxidant activities of extracts from fermented mulberry (Cudrania tricuspidata) fruit, and inhibitory actions on elastase and tyrosinase. Korean J Food Preserv 18, 236-243. https://doi.org/10.11002/kjfp.2011.18.2.236
  16. Kim, H. M., Han, S. B., Oh, G. T., Kim, Y. H., Hong, D. H., Hong, N. D. and Yoo, I. D. 1996. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Int Immunopharmacol 18, 295-303. https://doi.org/10.1016/0192-0561(96)00028-8
  17. Lee, B. W., Lee, J. H., Lee, S, T., Lee, H, S., Lee, W. S., Jeong, T. S. and Park, K. H. 2005. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg Med Chem Lett 15, 5548-5552. https://doi.org/10.1016/j.bmcl.2005.08.099
  18. Lee, I. K., Kim, C. J., Song, K. S., Kim, H. M., Koshino, H., Uramoto, M. and Yoo, I. D. 1996. Cytotoxic benzyl dihydroflavonols from Cudrania tricuspidata. Phytochemistry 41, 213-216 . https://doi.org/10.1016/0031-9422(95)00609-5
  19. Liblau, R. S., Singer, S. M. and McDevitt, H. O. 1995. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16, 34-38. https://doi.org/10.1016/0167-5699(95)80068-9
  20. Mahomoodally, F., Mesaik, A., Choudhary, M. I., Subratty, A. H., Gurib-Fakim, A. 2012. In vitro modulation of oxidative burst via release of reactive oxygen species from immune cells by extracts of selected tropical medicinal herbs and food plants. Asian Pac J Trop Med 5, 440-447. https://doi.org/10.1016/S1995-7645(12)60075-3
  21. Mosmann, T. R. and Coffman, R. L. 1989. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Ann Rev Immunol 7, 145-173. https://doi.org/10.1146/annurev.iy.07.040189.001045
  22. Park, K. H., Park, Y. D., Han, J. M., Im, K. R., Lee, B. W., Jeong, I. Y., Jeong, T. S. and Lee, W. S. 2006. Anti-atherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorg Med Chem Lett 16, 5580-5583. https://doi.org/10.1016/j.bmcl.2006.08.032
  23. Rengarajan, J., Szabo, S. J. and Glimcher, L. H. 2000. Transcriptional regulation of Th1/Th2 polarization. Immunol Today 21, 479-483. https://doi.org/10.1016/S0167-5699(00)01712-6
  24. Ryu, Y. B., Curtis-Long, M., Lee, J. W., Kim, J. H., Kim, J. Y., Kang, K. Y., Lee, W. S. and Park, K. H. 2009. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata. Bioorgan Med Chem 17, 2744-2750. https://doi.org/10.1016/j.bmc.2009.02.042
  25. Sanderson, C. J. 1992. Interleukin-5, eosinophils, and disease. Blood 79, 3101-3109.
  26. Shawn, B., Danuta, M., Skowronski, G., Kent, H., Robert, C. and Brunham, L. 2004. Aggregate content influences the Th1/Th2 immuneresponse to influenza vaccine: Evidence from a mousemodel. J Med Virol 72, 138-142. https://doi.org/10.1002/jmv.10540
  27. Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates andantioxidants by means of Folin Ciocalteu reagent. Method Enzymol 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  28. Skapenko, A., Kalden, J. R., Lipsky, P. E. and Schulze-Koops, H. 2005. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25- CD4+ precursors. J Immunol 175, 6107-6116. https://doi.org/10.4049/jimmunol.175.9.6107
  29. Yoshida, Y., Wang, M. Q., Liu, J. N., Shan, B. E. and Yamashita, U. 1997. Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular. Int Immunopharmacol 19, 359-370. https://doi.org/10.1016/S0192-0561(97)00076-3
  30. Zheng, Z. P., Tan, H. Y., Chen, J. and Wang, M. 2013. Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure–activity relationship study. Fitoterapia 84, 242-247. https://doi.org/10.1016/j.fitote.2012.12.006

Cited by

  1. Saccharification of Fagopyrum esculentum by Amylase Treatments increases Phenolic Compound Content and Antioxidant Activity vol.25, pp.1, 2015, https://doi.org/10.17495/easdl.2015.2.25.1.139
  2. Effects of Extract from Fermented Flower-buds of Panax ginseng C.A. Meyer on Mouse Cytokine IL-6, TNF-α Production vol.27, pp.1, 2014, https://doi.org/10.9799/ksfan.2014.27.1.043
  3. Development of Quantitative Analytical Method for Isoflavonoid Compounds from Fruits of Cudrania Tricuspidata vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.337
  4. Physicochemical Properties and Antioxidant Activities of Fermented Mulberry by Lactic Acid Bacteria vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.202
  5. Physicochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.361
  6. Physicochemical properties and storage stability of blueberry fermented by lactic acid bacteria vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.796
  7. Structure Analysis of Water-soluble Polysaccharides Extracted from The Unripe Fruit of Cudrania tricuspidata vol.42, pp.6, 2014, https://doi.org/10.5658/WOOD.2014.42.6.740
  8. Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.866