DOI QR코드

DOI QR Code

Effects of Lycopene on Endothelial Protein C Receptor Shedding In Vitro and In Vivo

In vitro와 in vivo에서 라이코펜이 EPCR 탈락에 미치는 영향

  • Yoo, Hayoung (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Lee, Hyun-Shik (School of Life Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Wonhwa (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Bae, Jong-Sup (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • 유하영 (경북대학교 약학대학 약학연구소) ;
  • 이현식 (경북대학교 자연과학대학 생명공학부) ;
  • 이원화 (경북대학교 약학대학 약학연구소) ;
  • 배종섭 (경북대학교 약학대학 약학연구소)
  • Received : 2013.04.26
  • Accepted : 2013.05.22
  • Published : 2013.05.30

Abstract

Endothelial protein C receptor (EPCR) plays a pivotal role in augmenting Protein C activation through the thrombin-thrombomodulin complex. EPCR activity is markedly changed by ectodomain cleavage and released as the soluble protein (sEPCR). EPCR shedding is mediated by tumor necrosis factor-${\alpha}$ converting enzyme (TACE). Lycopene found in tomatoes and tomato products has anti-oxidant, anti- cancer and anti-inflammatory effects. However, little is known about the effects of lycopene on EPCR shedding. We investigated this issue by monitoring the effects of lycopene on the phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and on the cecal ligation and puncture (CLP)-mediated EPCR shedding. Data showed that lycopene potently inhibited the PMA, TNF-${\alpha}$, IL-$1{\beta}$ and CLP-induced EPCR shedding by suppressing TACE expression. Furthermore, lycopene reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK). Given these results, lycopene should be viewed as a candidate therapeutic agent for the treatment of various severe vascular inflammatory diseases via inhibition of the EPCR shedding.

내피세포 단백질 C 수용체(EPCR)가 트롬빈-트롬보모듈린 복합체에 의한 단백질 C (PC) 활성 증가에 중요한 역할을 한다. EPCR의 활성은 ecodomain의 분열과 수용성 단백질(sEPCR)로 분비함으로써 현저하게 변화한다. EPCR의 탈락은 tumor necrosis factor-${\alpha}$ converting enzyme (TACE)에 의해 매개된다. 토마토에서 발견된 라이코펜은 항산화 효과, 항암 효과, 항염증 효과를 가지고 있다. 그러나 EPCR 탈락에서의 라이코펜의 효과는 알려지지 않았다. 우리는 라이코펜이 PMA, TNF-${\alpha}$, IL-$1{\beta}$와 CLP에 의해 유도된 EPCR 탈락에 미치는 영향을 연구했다. 그 결과, 라이코펜은 TACE의 발현을 억제시켜 PMA, TNF-${\alpha}$, IL-$1{\beta}$와 CLP에 의해 매개된 EPCR 탈락을 저해함을 보여준다. 또한 라이코펜은 PMA가 유발한 p38, ERK1/2, JNK의 인산화를 감소시켰다. 이러한 결과를 토대로, 라이코펜은 EPCR 탈락의 저해를 통해 다양한 중증 혈관 염증 질병 치료를 위한 후보 물질이 될 수 있을 것이다.

Keywords

References

  1. Bae, J. S. and Rezaie, A. R. 2011. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 118, 3952-3959. https://doi.org/10.1182/blood-2011-06-360701
  2. Bae, J. W. and Bae, J. S. 2011. Barrier protective effects of lycopene in human endothelial cells. Inflamm Res 60, 751-758. https://doi.org/10.1007/s00011-011-0330-9
  3. Buras, J. A., Holzmann, B. and Sitkovsky, M. 2005. Animal models of sepsis: setting the stage. Nat Rev Drug Discov 4, 854-865. https://doi.org/10.1038/nrd1854
  4. Esmon, C. T. 2004. Structure and functions of the endothelial cell protein C receptor. Crit Care Med 32, S298-301. https://doi.org/10.1097/01.CCM.0000126128.64614.81
  5. Fukudome, K. and Esmon, C. T. 1994. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem 269, 26486-26491.
  6. Ghosh, S., Pendurthi, U. R., Steinoe, A., Esmon, C. T. and Rao, L. V. 2007. Endothelial cell protein C receptor acts as a cellular receptor for factor VIIa on endothelium. J Biol Chem 282, 11849-11857. https://doi.org/10.1074/jbc.M609283200
  7. Gu, J. M., Katsuura, Y., Ferrell, G. L., Grammas, P. and Esmon, C. T. 2000. Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood 95, 1687-1693.
  8. Han, H., Du, B., Pan, X., Liu, J., Zhao, Q., Lian, X., Qian, M. and Liu, M. 2010. CADPE inhibits PMA-stimulated gastric carcinoma cell invasion and matrix metalloproteinase-9 expression by FAK/ MEK/ERK-mediated AP-1 activation. Mol Cancer Res 8, 1477-1488. https://doi.org/10.1158/1541-7786.MCR-10-0114
  9. Hayashi, T., Nakamura, H., Okada, A., Takebayashi, S., Wakita, T., Yuasa, H., Okumura, K. and Suzuki, K. 1999. Organization and chromosomal localization of the human endothelial protein C receptor gene. Gene 238, 367-373. https://doi.org/10.1016/S0378-1119(99)00360-1
  10. Heber, D. and Lu, Q. Y. 2002. Overview of mechanisms of action of lycopene. Exp Biol Med (Maywood) 227, 920-923.
  11. Kim, D. C., Lee, W. and Bae, J. S. 2011. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res 60, 1161-1168. https://doi.org/10.1007/s00011-011-0381-y
  12. Kurosawa, S., Stearns-Kurosawa, D. J., Carson, C. W., D'Angelo, A., Della Valle, P. and Esmon, C. T. 1998. Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood 91, 725-727.
  13. Kurosawa, S., Stearns-Kurosawa, D. J., Hidari, N. and Esmon, C. T. 1997. Identification of functional endothelial protein C receptor in human plasma. J Clin Inves 100, 411-418. https://doi.org/10.1172/JCI119548
  14. Lee, W., Ku, S. K., Bae, J. W. and Bae, J. S. 2012. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem Toxicol 50, 1826-1833. https://doi.org/10.1016/j.fct.2012.03.003
  15. Leng, Y., Steiler, T. L. and Zierath, J. R. 2004. Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice. Diabetes 53, 1436-1444. https://doi.org/10.2337/diabetes.53.6.1436
  16. Liaw, P. C., Neuenschwander, P. F., Smirnov, M. D. and Esmon, C. T. 2000. Mechanisms by which soluble endothelial cell protein C receptor modulates protein C and activated protein C function. J Biol Chem 275, 5447-5452. https://doi.org/10.1074/jbc.275.8.5447
  17. Lopez-Sagaseta, J., Montes, R., Puy, C., Diez, N., Fukudome, K. and Hermida, J. 2007. Binding of factor VIIa to the endothelial cell protein C receptor reduces its coagulant activity. J Thromb Haemost 5, 1817-1824. https://doi.org/10.1111/j.1538-7836.2007.02648.x
  18. Menschikowski, M., Hagelgans, A., Eisenhofer, G. and Siegert, G. 2009. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways. Exp Cell Res 315, 2673-2682. https://doi.org/10.1016/j.yexcr.2009.05.015
  19. Mosnier, L. O., Zlokovic, B. V. and Griffin, J. H. 2007. The cytoprotective protein C pathway. Blood 109, 3161-3172. https://doi.org/10.1182/blood-2006-09-003004
  20. Qu, D., Wang, Y., Esmon, N. L. and Esmon, C. T. 2007. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ ADAM17. J Thromb Haemost 5, 395-402. https://doi.org/10.1111/j.1538-7836.2007.02347.x
  21. Qu, D., Wang, Y., Song, Y., Esmon, N. L. and Esmon, C. T. 2006. The Ser219-->Gly dimorphism of the endothelial protein C receptor contributes to the higher soluble protein levels observed in individuals with the A3 haplotype. J Thromb Haemost 4, 229-235.
  22. Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., Al-Abed, Y., Metz, C., Miller, E. J., Tracey, K. J. and Ulloa, L. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10, 1216-1221. https://doi.org/10.1038/nm1124
  23. Wang, L., Bastarache, J. A., Wickersham, N., Fang, X., Matthay, M. A. and Ware, L. B. 2007. Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am J Respir Cell Mol Biol 36, 497-503. https://doi.org/10.1165/rcmb.2005-0425OC
  24. Xu, J., Qu, D., Esmon, N. L. and Esmon, C. T. 2000. Metalloproteolytic release of endothelial cell protein C receptor. J Biol Chem 275, 6038-6044. https://doi.org/10.1074/jbc.275.8.6038
  25. Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H. E., Susarla, S. M., Ulloa, L., Wang, H., DiRaimo, R., Czura, C. J., Roth, J., Warren, H. S., Fink, M. P., Fenton, M. J., Andersson, U. and Tracey, K. J. 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 101, 296-301. https://doi.org/10.1073/pnas.2434651100