DOI QR코드

DOI QR Code

캐비테이션 터널 시험용 청음기배열 최적 설계기법

A Study on Hydrophone Array Design Optimization for Cavitation Tunnel Noise Measurements

  • 박철수 (한국해양과학기술원 선박해양플랜트연구소) ;
  • 설한신 (한국해양과학기술원 선박해양플랜트연구소) ;
  • 김건도 (한국해양과학기술원 선박해양플랜트연구소) ;
  • 박영하 (한국해양과학기술원 선박해양플랜트연구소)
  • 투고 : 2012.11.07
  • 심사 : 2013.02.06
  • 발행 : 2013.05.31

초록

본 논문에서는 캐비테이션 터널에서의 소음계측용 청음기 배열 설계를 위한 최적화 기법을 제안하였다. 제안된 최적설계 기법은 배열 설계인자 및 목적함수 정의 그리고 최적화 알고리즘 적용 등의 내용으로 구성되어 있다. 설계인자 정의는 원형배열, 나선배열, 다중나선배열을 대상으로 하였다. 목적함수는 주엽의 빔폭과 최대 부엽 크기를 동시에 고려할 수 있도록 정의하였다. 최적화 알고리즘으로는 광역 최적화 기법의 일종인 VFSR 기법을 적용하였다. 최적 설계기법을 각 배열에 적용 후 도출된 최적 배열을 대상으로 최대 부엽크기 및 주엽의 빔폭을 분석하였다. 끝으로 캐비테이션 터널 내부의 다중반사를 고려한 빔형성 결과 평가를 통해 본 기법의 유용성을 확인하였다.

This paper proposes a hydrophone array design optimization technique for cavitation tunnel noise measurements. The optimization technique comprises of design parameters, an objective function and an optimization algorithm. The design parameters are defined for circular, spiral and multi-spiral arrays. The objective function is defined so as to consider the mainlobe beamwidth and the maximum sidelobe level simultaneously. A global optimization scheme is applied to the array design using very fast simulated reannealing (VFSR). After applying the optimization technique to arrays respectively, the peak sidelobe level and the mainlobe beamwidth of optimum arrays are analyzed. Finally the array patterns considering multiple reflections in the cavitation tunnel are evaluated to validate the proposed method.

키워드

참고문헌

  1. D. Ross, Mechanics of underwater noise (Pergamon Press, New York, 1976).
  2. B. L. Southall. Final report of the NOAA International Conference: "Shipping Noise and Marine Mammals: A Forum for Science, Management, and Technology" (NOAA, Arlington, 2004).
  3. B. L. Southall and A. Scholik-Schlomer. Final report of the NOAA International Conference: "Potential Application of Vessel-Quieting Technology on Large Commercial Vessels" (NOAA, Silver Spring, 2007).
  4. C. Park, H. Seol, G. D. Kim, and Y. H. Park, "A Study on the Noise Measurement of the Propeller and the Rudder in the Large Cavitation Tunnel," in Proc. 10th ICHD, 185-190, (2012).
  5. E. Korkut and M. Atlar, "An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers," Ocean Engineering,41, 1-12 (2012). https://doi.org/10.1016/j.oceaneng.2011.12.012
  6. ITTC, Cavitation committee report, in Proc. 18th International Towing Tank Conference (1987).
  7. C. Park, Y. Cho, and H. Seol,"A Study on Propeller Noise Localizations in a Cavitation Tunnel using MFP," (in Korean), J. Acoust. Soc. Kr. 26, 220-225 (2007).
  8. A. Tolstoy, Matched Field Processing for Underwater Acoustics (World Scientific, Singapore, 1993).
  9. H. L. Van Trees, Optimum Array Processing (Wiley, New York, 2002).
  10. P. A. Abbot, S. A. Celuzza and R. J. Etter, "The Acoustic Characteristics of the Naval Surface Warfare Center's Large Cavitation Channel (LCC)," in Proc. Flow Noise Modeling, Measurement and Control, ASME (1993).
  11. R. Sato, T. Mori, R. Yakushiji, K. Naganuma, M. Nishimura, K. Nakagawa and T. Sasajima, "Conceptual Design of the Flow Noise Simulator,"" in Proc. 4th ASME_JSME Joint Fluids Engineering Conference (2003).
  12. T. J. Muller (Ed.), Aeroacoustic Measurements (Springer, Berlin, 2002).
  13. H. C. Pumphrey, "Design of Sparse Arrays in One, Two, and Three Dimentsions," J. Acout. Soc. Am. 93, 1620-1628 (1993). https://doi.org/10.1121/1.406821
  14. D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques (Prentice Hall, New Jersey, 1993).
  15. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice Hall, New Jersey, 1975).
  16. B. D. Steinberg, Principle of Aperture and Array SystemDesign (John Wiley & Sons, New York, 1976).
  17. L. Ingber, "Very fast simulated reannealing," Math. Comput. Modeling, 12, 967-993 (1989). https://doi.org/10.1016/0895-7177(89)90202-1
  18. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1983).

피인용 문헌

  1. Noise Localization Method for Model Tests in a Large Cavitation Tunnel Using a Hydrophone Array vol.8, pp.12, 2016, https://doi.org/10.3390/rs8030195