DOI QR코드

DOI QR Code

Fabrication of CO2 Gas Sensors Using Graphene Decorated Au Nanoparticles and Their Characteristics

Au 나노입자가 코팅된 그래핀 기반 CO2 가스센서의 제작과 그 특성

  • Received : 2013.01.10
  • Accepted : 2013.02.19
  • Published : 2013.05.31

Abstract

This paper describes the fabrication and characterization of graphene based carbon dioxide ($CO_2$) gas sensors. Graphene was synthesized by thermal decomposition of SiC. The resistivity $CO_2$ gas sensors were fabricated by pure graphene and graphene decorated Au nanoparticles (NPs). The Au NPs with size of 10 nm were decorated on graphene. Au electrode deposited on the graphene showed Ohmic contact and the sensors resistance changed following to various $CO_2$ concentrations. Resulting in resistance sensor using pure graphene can detect minimum of 100 ppm $CO_2$ concentration at $50^{\circ}C$, whereas Au/graphene can detect minimum 2 ppm $CO_2$ concentration at same at $50^{\circ}C$. Moreover, Au NPs catalyst improved the sensitivity of the graphene based $CO_2$ sensors. The responses of pure graphene and Au/graphene are 0.04% and 0.24%, respectively, at $50^{\circ}C$ with 500 ppm $CO_2$ concentration. The optimum working temperature of $CO_2$ sensors is at $75^{\circ}C$.

Keywords

References

  1. A. E. Hoyt, A. J. Ricco, J. W. Bartholomew, and G. C. Osbourn, "SAW sensors for the room-temperature measurement of $CO_2$ and relative humidity", Anal. Chem., Vol. 70, pp. 2137-2145, 1998. https://doi.org/10.1021/ac971095z
  2. G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, "Metal oxide semiconductor gas sensors in environmental monitoring", Sensors, Vol. 10, pp. 5469-5502, 2010. https://doi.org/10.3390/s100605469
  3. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, pp. 652-655, 2007. https://doi.org/10.1038/nmat1967
  4. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors", Science, Vol. 287, pp. 622-625, 2000. https://doi.org/10.1126/science.287.5453.622
  5. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.C. Cheng, "Carbon dioxide gas sensor using a graphene sheet", Sens. Actuator BChem., Vol. 157, pp. 310-313, 2011. https://doi.org/10.1016/j.snb.2011.03.035
  6. M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, and Y. H. Kim, "Flexible hydrogen sensors using graphene with palladium nanoparticle decoration", Sens. Actuator B-Chem., Vol. 169, pp. 387-392, 2012. https://doi.org/10.1016/j.snb.2012.05.031
  7. M. Gautam and A. H. Jayatissa, "Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles", Solid-State Electron., Vol. 78, pp. 159-165, 2012. https://doi.org/10.1016/j.sse.2012.05.059
  8. S. Kim and G. S. Chung, "Synthesis of graphene using 3C-SiC thin films with thermal annealing conditions", J. Sensor Sci. & Tech., Vol. 21, No. 5, pp. 385-388, 2012. https://doi.org/10.5369/JSST.2012.21.5.385
  9. B. H. Chu, C. F. Lo, J. Nicolosi, C. Y. Chang, V. Chen, W. Strupinski, S. J. Pearton, and F. Ren, "Hydrogen detection using platinum coated graphene grown on SiC", Sens. Actuator B-Chem., Vol. 157, pp. 500-503, 2011. https://doi.org/10.1016/j.snb.2011.05.007
  10. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor", Nat. Nanotech., Vol. 3, pp. 210-215, 2008. https://doi.org/10.1038/nnano.2008.67
  11. S. Stankovich, D. A. Dikin, R. D. Piner, Kevin. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, Vol. 45, pp. 1558-1565, 2007. https://doi.org/10.1016/j.carbon.2007.02.034
  12. A. N. Sidorov, G. W. Stawinski, A. H. Jayatissa, F. P. Zamborini, and G. U. Sumanasekera, "A surfaceenhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth", Carbon, Vol. 50, pp. 699-705, 2012. https://doi.org/10.1016/j.carbon.2011.09.030
  13. Y. K. Kim, H. K. Na, Y. W. Lee, H. Jang, S. W. H, and D. H. Min, "The direct growth of gold rods on graphene thin films", Chem. Commun., Vol. 46, pp. 3185-3187, 2010. https://doi.org/10.1039/c002002h
  14. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A.Tuantranont,and S.Phanichphant "Semiconducting metal oxides as sensors for environmentally hazardous gases", Sens. Actuator B-Chem., Vol. 160, pp. 580-591, 2011. https://doi.org/10.1016/j.snb.2011.08.032
  15. S. Basu and P. Bhattacharyya, "Recent developments on graphene and graphene oxide based solid state gas sensors", Sens. Actuator BChem., Vol. 173, pp. 1-21, 2012.
  16. B. Bahrami, A. Khodadadi, M. Kazemeini, and Y. Mortazavi, "Enhanced CO sensitivity and selectivity of gold nanoparticles-doped $SnO_2$ sensor in presence of propane and methane", Sens. Actuator B-Chem., Vol. 133, pp. 352-356, 2008. https://doi.org/10.1016/j.snb.2008.02.034