DOI QR코드

DOI QR Code

Morphology of CD4+ T Lymphocytes Bound on Nano-Patterened Substrates for Sensing the Size of Nanoholes

  • Kim, Dong-Joo (Department of Semiconductor Science and Technology, Chonbuk National University) ;
  • Kim, Gil-Sung (Department of Semiconductor Science and Technology, Chonbuk National University) ;
  • Woo, Yong-Deuck (Department of Mechanical and Automotive Engineering, Woosuk University) ;
  • Lee, Sang-Kwon (Department of Physics, Chung-Ang University)
  • Received : 2013.04.04
  • Accepted : 2013.05.17
  • Published : 2013.05.31

Abstract

We report on direct finding of how the morphology (i.e. filopodia width) of $CD4^+$ T lymphocytes correlates with the size of the quartz nanohohole arrays (QNHAs, 140, 200, 270, and 550 nm in diameter) via scanning electron microscopy (SEM). This research exhibits that the filopodia of $CD4^+$ T-lymphocytes extended on the QNHA substrates were observed to increase in width by increasing the size of QNHA in diameter from 140 to 550 nm. This strong linear response ($R^2$=0.988, n = 6) in filopodia's width of surface-bound $CD4^+$ T-cells with topographical structures of QNHA can be explained by contact guidance between the cells and solid-state substrates. Furthermore, this research suggests that the protruded filopodia of surface-bound T-lymphocytes can be used as a biosensor for sensing the topographical information of the nano-patterned substrates.

Keywords

References

  1. J. M. Lorcy, F. Massuyeau, P. Moreau et al., "Coaxial nickel/poly(p-phenylene vinylene) nanowires as luminescent building blocks manipulated magnetically", Nanotechnology, Vol. 20, No. 40, p. 405601, 2009. https://doi.org/10.1088/0957-4484/20/40/405601
  2. S. Schafer, Z. Wang, R. Zierold et al., "Laser-induced charge separation in CdSe nanowires", Nano Lett., Vol. 11, No. 7, pp. 2672-2677, 2011. https://doi.org/10.1021/nl200770h
  3. P. D. Yang, R. X. Yan, and M. Fardy, "Semiconductor nanowire: What's next?", Nano Lett., Vol. 10, No. 5, pp. 1529-1536, 2010. https://doi.org/10.1021/nl100665r
  4. K. S. Brammer, C. Choi, C. J. Frandsen et al., "Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation", Acta Biomater., Vol. 7, No. 2, pp. 683-690, 2011. https://doi.org/10.1016/j.actbio.2010.09.022
  5. W. Kim, J. K. Ng, M. E. Kunitake et al., "Interfacing silicon nanowires with mammalian cells", J. Am. Chem. Soc., Vol. 129, No. 23, pp. 7228-7229, 2007. https://doi.org/10.1021/ja071456k
  6. Jianping Fu, Yang-Kao Wang, Michael T Yang et al., "Mechanical regulation of cell function with geometrically modulated elastomeric substrates", Nat. Methods, Vol. 7, No. 9, p. 799, 2010.
  7. S. T. Kim, D. J. Kim, T. J. Kim et al., "Novel streptavidin-functionalized silicon nanowire arrays for CD4(+) T lymphocyte separation", Nano Lett., Vol. 10, No. 8, pp. 2877-2883, 2010. https://doi.org/10.1021/nl100942p
  8. S. K. Lee, G. S. Kim, Y. Wu et al., "Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells", Nano Lett., Vol. 12, No. 6, pp. 2697-2704, 2012. https://doi.org/10.1021/nl2041707
  9. D. J. Kim, J. K. Seol, Y. Wu et al., "A quartz nanopillar hemocytometer for high-yield separation and counting of CD4(+) T lymphocytes", Nanoscale, Vol. 4, No. 7, pp. 2500-2507, 2012. https://doi.org/10.1039/c2nr11338d
  10. Anselme K, Davidson P, Popa A M et al., "The interaction of cell and bacteria with surfaces structured at the nanometre scale", Acta Biomater., Vol. 6, p. 3824, 2010. https://doi.org/10.1016/j.actbio.2010.04.001
  11. Xuanhong Cheng, Amit Gupta, Chihchen Chen et al., "Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnosis", Lab Chip, Vol. 9, No. 10, pp. 1357-1364, 2009. https://doi.org/10.1039/b818813k
  12. Park N K et al., "The correlation of serum HER-2/neu and CA 15-3 in patients with metastatic breast cancer", J. Breast Cancer, Vol. 11, pp. 18-24, 2008. https://doi.org/10.4048/jbc.2008.11.1.18
  13. Yair Fisher, Anna Nemirovsky, Rona Baron et al., "The correlation of serum HER-2/neu and CA 15-3 in patients with plaques enhance plaque clearance in a mouse model of Alzheimer's disease", PloS one, Vol. 5, No. 5, p. e10830, 2010. https://doi.org/10.1371/journal.pone.0010830
  14. D. J. Kim, J. K. Seol, Geehee Lee et al., "Cell adhesion and migration on nanopatterned substrates and their effects on cell-capture yield", Nanotechnology, Vol. 23, p. 395102, 2012. https://doi.org/10.1088/0957-4484/23/39/395102
  15. C. J. Bettinger, R. Langer, and J. T. Borenstein, "Engineering substrate topography at the micro- and nanoscale to control cell function", Angew. Chem. Int. Edit., Vol. 48, No. 30, pp. 5406-5415, 2009. https://doi.org/10.1002/anie.200805179
  16. M. J. Dalby, "Topographically induced direct cell mechanotransduction", Med. Eng. Phy., Vol. 27, No. 9, pp. 730-742, 2005. https://doi.org/10.1016/j.medengphy.2005.04.005
  17. M. J. Dalby, N. Gadegaard, M. O. Riehle et al., "Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size", Int. J. Biochem. Cell B., Vol. 36, No. 10, pp. 2005-2015, 2004. https://doi.org/10.1016/j.biocel.2004.03.001
  18. A. Hart, N. Gadegaard, C. D. W. Wilkinson et al., "Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography", J. Mater. Sci.-Mater. M., Vol. 18, No. 6, pp. 1211-1218, 2007.
  19. M. J. Dalby, M. O. Riehle, H. J. H. Johnstone et al., "Polymer-demixed nanotopography: Control of fibroblast spreading and proliferation", Tissue Eng., Vol. 8, No. 6, pp. 1099-1108, 2002. https://doi.org/10.1089/107632702320934191