DOI QR코드

DOI QR Code

Antioxidant and Anticancer Effects of Edible and Medicinal Mushrooms

식용 및 약용버섯의 항산화 및 In vitro 항암 효과

  • Qi, Yongcai (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Zhao, Xin (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Lim, Yaung-Iee (Dept. of Food Science and Nutrition, Sungshin Women's University) ;
  • Park, Kun-Young (Dept. of Food Science and Nutrition, Pusan National University)
  • 치용카이 (부산대학교 식품영양학과) ;
  • 조흔 (부산대학교 식품영양학과) ;
  • 임양이 (성신여자대학교 식품영양학과) ;
  • 박건영 (부산대학교 식품영양학과)
  • Received : 2012.12.07
  • Accepted : 2013.04.19
  • Published : 2013.05.31

Abstract

The antioxidant and anticancer effects of the edible mushrooms Lentinus edodes (LE, Pyogo mushroom) and Agaricus blazei (AB, Agaricus mushroom), and the medicinal mushrooms Cordyceps militaris (CM, Dong chunghacho), Ganoderma lucidum (GL, Youngji mushroom), Inonotus obliquus (IO, Chaga mushroom), and Phellinus linteus (PL, Sangwhang mushroom) were studied in vitro. The bioactive components were extracted by methanol. The antioxidant effects were evaluated using the DPPH and hydroxyl radical scavenging assays. The antioxidant activities of medicinal mushrooms (35~90%) were higher than edible mushrooms (4~23%). The in vitro anticancer effects of the mushrooms were evaluated using the MTT assay in AGS gastric adenocarcinoma cells, HCT-116 colon carcinoma cells, and HepG2 hepatoma cells. The medicinal mushrooms CM, GL, IO, and PL showed 28~91% inhibition, while the edible mushrooms LE and AB exhibited 5~40% inhibition. The medicinal mushrooms, compared to edible mushrooms, effectively down-regulated the gene expression of the anti-apoptosis related gene Bcl-2 and inflammation-related genes iNOS and COX-2, and up-regulated the pro-apoptosis gene Bax (p<0.05). Total polyphenol and flavonoids contents of the medicinal mushrooms were 9.1~35.7 mg/g, while the edible mushrooms showed 0~13.3 mg/g. This study showed that antioxidant activities and anticancer activities in vitro increased in the order LE, AB, GL, CM, IO and PL. LE and AB showed the lowest effects among the samples, GL and CM had medium effects, and IO and PL exhibited the highest effects in the antioxidant and anticancer effect for three different human cancer cells. Taken together, PL resulted in the highest and LE the lowest effects in this study.

식용버섯(표고버섯과 아가리쿠스버섯)과 약용버섯(영지버섯, 동충하초, 차가버섯, 상황버섯) 추출물의 항산화효과와 인체 암세포(AGS, HCT-116, 및 HepG2) 성장 저해율, apoptosis 유도에 관련된 Bcl-2, Bax 유전자, 그리고 염증에 관련된 iNOS 및 COX-2 유전자의 분석을 통해 식용버섯과 약용버섯의 in vitro 항암효과를 비교하였다. DPPH와 hydroxy radical($OH{\cdot}$) 소거능력은 표고버섯, 아가리쿠스버섯, 동충하초, 영지버섯, 차가버섯, 상황버섯 순으로 높았으며, 식용버섯보다는 약용버섯의 항산화효과가 더 높았고, 약용버섯 중 차가버섯과 상황버섯의 항산화효과는 78%와 90%로 상황버섯이 가장 우수하였다(p<0.05). AGS 위암세포, HCT-116 결장암세포, HepG2 간암세포에 대한 억제효과는 식용버섯인 아가리쿠스버섯과 표고버섯 추출물은 5~40%, 약용버섯인 영지버섯과 동충하초 추출물은 28~79%, 상황버섯과 차가버섯 추출물은 75~91%로 나타났다. Apoptosis 유도에 관련된 Bcl-2 및 Bax 유전자 발현과 염증에 관련된 iNOS 및 COX-2 유전자 발현은 표고버섯, 아가리쿠스버섯, 동충하초, 영지버섯, 차가버섯, 상황버섯 순으로 apoptosis를 유도하는 작용과 세포의 발암(염증) 유도과정을 억제하는 효과가 높게 나타났다. 총 폴리페놀과 플라보노이드 화합물의 함량은 상황버섯의 폴리페놀과 플라보노이드함량이 각각 317.2 mg/g 및 35.7 mg/g으로 가장 높게 나타났으며 차가버섯, 영지버섯, 동충하초, 아가리쿠스버섯, 표고버섯 추출물 순으로 함량이 낮아졌다. 식용버섯보다 약용버섯의 총 폴리페놀과 플라보노이드 화합물의 함유량이 많았고, 이들 화합물 함량이 많을수록 항산화효과와 인체 암세포의 성장 억제효과가 높아졌다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7: 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
  2. Kim SS, Kim YS. 1990. Korean mushrooms. Yupoong Publishing Co., Seoul, Korea. p 3.
  3. Kim HJ, Lee IS. 2004. Anti-mutagenic and cytotoxic effects of Korean wild mushrooms extracts. Korean J Food Sci Technol 36: 662-668.
  4. Choi SJ, Lee YS, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  5. Yang JH, Lin HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem 77: 229-235. https://doi.org/10.1016/S0308-8146(01)00342-9
  6. Mus JL, Lin HC, Song SF. 2002. Antioxidant properties of several specialty mushrooms. Food Res Int 35: 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  7. Choi YH, Kim MJ, Lee HS, Yun BS, Hu C, Kwak SS. 1998. Antioxidative compounds in aerial parts of Potentilla fragariodes. Korean J Pharmacogn 29: 79-85.
  8. Nakajima A, Ishida T, Koga M, Takeuchi T, Mazda O, Takeuchi M. 2002. Effect of hot water extract from Agaricus blazei Murill on antibody-producing cells in mice. Int Immunopharmacol 2: 1205-1211. https://doi.org/10.1016/S1567-5769(02)00056-5
  9. Chang HL, Chao GR, Chen CC, Mau JL. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem 74: 203-207. https://doi.org/10.1016/S0308-8146(01)00127-3
  10. Mizuno M, Morimoto M, Minato K, Tsuchida H. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62:434-437. https://doi.org/10.1271/bbb.62.434
  11. Bak SS, Kong CS, Rhee SH, Rho CW, Kim NK, Choi KL, Park KY. 2007. Effect of sulfur enriched young radish kimchi on the induction of apoptosis in AGS human gastric adenocarcinoma cells. J Food Sci Nutr 12: 79-83. https://doi.org/10.3746/jfn.2007.12.2.079
  12. Chung EJ, Kim SY, Nam YJ, Park JH, Hwang HJ, Lee-Kim YC. 2005. Effects of kale juice powder on serum lipids, folate and plasma homocysteine levels in growing rats. J Korean Soc Food Sci Nutr 34: 1175-1181. https://doi.org/10.3746/jkfn.2005.34.8.1175
  13. Choi EJ, Kim SH, Shim SH, Chung HJ, Bang WS. 2012. Antioxidative activity of the n-hexane fractions from Spatholobus suberectus (SS), Scutellsria barbata (SB), Psoralea corylifolia (PC), Curcuma zedoaria (CZ), Schisandra chinensis (SC), and Corydalis turtschaninovii (CT). Korean J Food Sci Technol 44: 493-497. https://doi.org/10.9721/KJFST.2012.44.4.493
  14. Ryu DY, Kim MS, Min OJ, Kim DW. 2008. Antioxidative effects of Phellinus linteus extract. Korean J Plant Res 21: 91-95.
  15. Woisky RG, Salatino A. 1998. Analysis of propolis: some parameters and procedures for chemical quality control. J Apicult Res 37: 99-105. https://doi.org/10.1080/00218839.1998.11100961
  16. Sohn HY, Shin YK, Kim JS. 2010. Anti-proliferative activities of solid-state fermented medicinal herbs using Phellinus baumii against human colorectal HCT116 cell. J Life Sci 20: 1268-1275. https://doi.org/10.5352/JLS.2010.20.8.1268
  17. Kim JK, Bae JT, Lee JW, Hwang Bo MH, Im HG, Lee IS. 2005. Antioxidative activity and inhibition effects on human leukemia cells of edible mushrooms extracts. Korean J Food Preserv 12: 80-85.
  18. Choi YH, Park C, Jung IH, Choi BT, Lee YT, Park DI, Jeong YK. 2005. In vitro cytotoxic effects of wine produced by Phellinus linteus fermentation. Korean J Oriental Physiol Pathol 19: 950-954.
  19. Hong MH, Jin YJ, Pyo YH. 2012. Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J Korean Soc Food Sci Nutr 41: 1235-1241. https://doi.org/10.3746/jkfn.2012.41.9.1235
  20. Li YG, Ji DF, Zhong S, Zhu JX, Chen S, Hu GY. 2011. Antitumor effects of proteoglycan from Phellinus linteus by immunomodulating and inhibiting Reg IV/EGFR/Akt signaling pathway in colorectal carcinoma. Int J Biol Macromol 48: 511-517. https://doi.org/10.1016/j.ijbiomac.2011.01.014
  21. Huang HY, Chieh SY, Tso TK, Chien TY, Lin HT, Tsai YC. 2011. Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. J Ethnopharmacol 133: 460-466. https://doi.org/10.1016/j.jep.2010.10.015
  22. Chung BH, Seo HS, Kim HS, Woo SH, Cho YG. 2010. Antioxidant and anticancer effects of fermentation vinegars with Phellinus liteus, Inonotus obliquus, and Pleurotus ostreatus. Korean J Medicinal Crop Sci 18: 113-117.
  23. Li G, Kim DH, Kim TD, Park BJ, Park HD, Park JI, Na MK, Kim HC, Hong ND, Lim K, Hwang BD, Yoon WH. 2004. Protein-bound polysaccharide from Phellinus linteus induces G2/M phase arrest and apoptosis in SW480 human colon cancer cells. Cancer Lett 216: 175-181. https://doi.org/10.1016/j.canlet.2004.07.014
  24. An BJ, Bae MJ, Choi HJ, Zhang YB, Sung TS, Choi C. 2002. Isolation of polyphenol compounds from the leaves of Korean persimmon (Diospyrus kaki L. Folium). J Korean Soc Agric Chem Biotechnol 45: 212-217.
  25. Yayeh T, Oh WJ, Park SC, Kim TH, Cho JY, Park HJ, Lee IK, Kim SK, Hong SB, Yun BS, Rhee MH. 2012. Phellinus baumii ethyl acetate extract inhibits lipopolysaccharideinduced iNOS, COX-2, and proinflammatory cytokine expression in RAW264.7 cells. J Nat Med 66: 49-54. https://doi.org/10.1007/s11418-011-0552-8
  26. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  27. Kim JO, Jung MJ, Choi HJ, Lee JT, Lim AK, Hong JH, Kim DI. 2008. Antioxidative and biological activity of hot water and ethanol extracts from Phellinus linteus. J Korean Soc Food Sci Nutr 37: 684-690. https://doi.org/10.3746/jkfn.2008.37.6.684

Cited by

  1. Comparative analysis of nitrite scavenging activity and anti-inflammation effects in the fruiting bodies of medicinal mushrooms vol.13, pp.4, 2015, https://doi.org/10.14480/JM.2015.13.4.330
  2. A Study on the Biological Activities of Wild Mushroom Extracts from Jeju Island vol.41, pp.2, 2015, https://doi.org/10.15230/SCSK.2015.41.2.165
  3. Protective Effects of Phellinus linteus and Curry-Added Cooked Mixed Grain Rice Extracts on Oxidative Stress-Induced LLC-PK1 Cell Damage vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1674
  4. Survey on packaging status and sensory quality of fresh-cut mushrooms from retail markets vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.287
  5. Mushrooms do not contain flavonoids vol.25, 2016, https://doi.org/10.1016/j.jff.2016.05.005
  6. Antioxidant Activities of Pleurotus cornucopiae Extracts by Extraction Conditions vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.836
  7. Antioxidant Activities and Antimicrobial Effects of Solvent Extracts from Lentinus edodes vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1144
  8. Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.651
  9. Antioxidant activity and hepatic lipids improvement effects of Rubus coreanus in high-fat diet-fed rats vol.38, pp.2, 2015, https://doi.org/10.7853/kjvs.2015.38.2.117
  10. Study on Sawdust Bag Cultivation of Shiitake (Lentinula edodes), using Oak Wilt-Diseased Logs 2016, https://doi.org/10.4489/KJM.2016.44.4.300
  11. Skin-whitening effects of hot water extract from domestic edible mushrooms vol.14, pp.4, 2016, https://doi.org/10.14480/JM.2016.14.4.225
  12. Study of Lipoprotein Lipase Inhibitory Activity of Anti-obesity Herb Extracts vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.246
  13. Protective effect of Korean diet food groups on lymphocyte DNA damage and contribution of each food group to total dietary antioxidant capacity (TDAC) vol.49, pp.5, 2016, https://doi.org/10.4163/jnh.2016.49.5.277
  14. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  15. Evaluation of Antioxidant and Antimicrobial Activities of Solvent Extracts from Coriolus versicolor vol.44, pp.12, 2015, https://doi.org/10.3746/jkfn.2015.44.12.1793
  16. Antioxidant activity and anti-obesity effect of Coprinus comatus in Zucker rat (fa/fa) vol.37, pp.1, 2014, https://doi.org/10.7853/kjvs.2014.37.1.51
  17. 꽃송이버섯 추출물의 화장품소재로서의 가능성 평가 vol.32, pp.4, 2013, https://doi.org/10.12925/jkocs.2015.32.4.731
  18. 약용버섯과 식용버섯의 건조방법에 따른 품질특성 vol.23, pp.5, 2013, https://doi.org/10.11002/kjfp.2016.23.5.689
  19. 해방풍 부위별 용매추출물의 항산화 활성 및 nitric oxide 생성 억제 vol.24, pp.1, 2017, https://doi.org/10.11002/kjfp.2017.24.1.116
  20. 한국에서 개발된 곤충유래 약용버섯인 누에동충하초의 생산기술개발 및 약리학적 특성 vol.27, pp.2, 2013, https://doi.org/10.5352/jls.2017.27.2.247
  21. 변산반도 국립공원 고등균류의 자원이용적 특성 vol.31, pp.2, 2013, https://doi.org/10.13047/kjee.2017.31.2.230
  22. LED 광원에 따른 표고 톱밥배지 갈변효율 및 자실체 특성 vol.15, pp.4, 2013, https://doi.org/10.14480/jm.2017.15.4.195
  23. 버섯 및 다시마 추출물과 갓의 첨가가 김치의 항산화 특성에 미치는 영향 vol.31, pp.4, 2018, https://doi.org/10.9799/ksfan.2018.31.4.471
  24. 새송이버섯, 팽이버섯 열수추출물의 항산화 및 항암 활성 vol.31, pp.6, 2018, https://doi.org/10.9799/ksfan.2018.31.6.911
  25. 한국 및 중국산 약용버섯류의 추출용매에 따른 생리활성 성분 비교 vol.17, pp.1, 2019, https://doi.org/10.14480/jm.2019.17.1.34
  26. 국내 야생수집 버섯류 추출물의 생리활성 분석 vol.17, pp.2, 2013, https://doi.org/10.14480/jm.2019.17.2.70
  27. 한국 및 중국산 목이 및 흰목이의 추출용매에 따른 생리활성 성분 비교 vol.17, pp.2, 2013, https://doi.org/10.14480/jm.2019.17.2.78
  28. 한입버섯의 추출 용매별 항산화 및 항염증 활성 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.136
  29. 국내 야생버섯의 항산화 활성 및 베타글루칸 함량 분석 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.144
  30. 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2013, https://doi.org/10.9799/ksfan.2020.33.1.064
  31. Functional Cordyceps Coffee Containing Cordycepin and β-Glucan vol.25, pp.2, 2013, https://doi.org/10.3746/pnf.2020.25.2.184
  32. 영지 균주별 생육특성, 생리활성, 영양성분 및 당 성분 함량 비교 vol.18, pp.3, 2013, https://doi.org/10.14480/jm.2020.18.3.221
  33. 복령균핵, 균사체 및 자실체의 추출용매별 생리활성 성분 비교 vol.18, pp.3, 2013, https://doi.org/10.14480/jm.2020.18.3.244
  34. 버섯차 개발을 위한 로스팅 식용버섯류와 곡물첨가물의 혼합비율에 따른 추출온도 및 시간별 생리활성 및 영양성분 변화 vol.18, pp.4, 2013, https://doi.org/10.14480/jm.2020.18.4.344
  35. 팽이, 잎새버섯, 꽃송이버섯 가공방법별 생리활성 및 영양성분 변화 vol.18, pp.4, 2013, https://doi.org/10.14480/jm.2020.18.4.403
  36. 국내 수집 야생버섯류 추출물의 생리활성 비교 vol.19, pp.1, 2021, https://doi.org/10.14480/jm.2021.19.1.41