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Abstract
The linear support vector machine(SVM) is motivated by the maximal margin separating hyperplane and is

a popular tool for binary classification tasks. Many studies exist on the consistency properties of SVM; however,
it is unknown whether the linear SVM is consistent for estimating the optimal classification boundary even in
the simple case of two Gaussian classes with a common covariance, where the optimal classification boundary
is linear. In this paper we show that the linear SVM can be inconsistent in the univariate Gaussian classification
problem with a common variance, even when the best tuning parameter is used.

Keywords: Consistency for classification, Fisher consistency, Gaussian linear discriminant analy-
sis, support vector machines.

1. Introduction

We consider the binary classification problem commonly studied in statistics and pattern recognition.
Let X ∈ Rd be the random input vector, and Y ∈ {−1, 1} be the class label. Let the prior probabilities
of the two classes be π1 = pr(Y = 1) and π0 = pr(Y = −1), and the nondegenerate class densities be
denoted by g1(x) and g0(x). Then the density function of X is

f (x) = π1g1(x) + π0g0(x),

and the conditional probability of the positive class is

p(x) = pr(Y = 1|X = x) =
π1g1(x)

π1g1(x) + π0g0(x)
.

For a classification rule η: Rd → {−1, 1}, the generalization error is the expected misclassification
rate R(η) = pr{η(X) , Y}. If the conditional class probability p(x) = pr(Y = 1|X = x) is available,
it is well known that the optimal classification rule that minimizes the generalization error is ηB(x) =
sign{p(x) − 1/2}. This optimal rule is usually called the Bayes (optimal) rule. The corresponding
generalization error RB = R(ηB) is called the Bayes (optimal) risk. This is a lower bound of the
generalization error of any classification rule.

In practice we do not know the underlying probability distribution of (X,Y), and need to learn a
classification rule from a training sample. Denote the training sample by Dn = {(xi, yi), i = 1, . . . , n},
where (xi, yi) are independent realizations of (X,Y). A sequence of classifiers ϕn based on the sample
Dn is consistent if its generalization error R(ϕn) converges to the Bayes optimal risk RB as n→ ∞.
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The support vector machine(SVM) is a classification method developed in the machine learning
literature. It has been shown to give excellent performance in a number of practical studies. The hard
margin linear SVM (Boser et al., 1992) is motivated by the geometric consideration of maximizing
the classification margin when the two classes of points in the training set can be separated by a linear
hyperplane. This amounts to a quadratic programming problem: find w ∈ Rd, b ∈ R, to minimize
∥w∥2/2, subject to

w′xi + b ≥ +1, for yi = +1; (1.1)
w′xi + b ≤ −1, for yi = −1. (1.2)

That is, to maximize the distance between the two hyperplanes w′x + b = +1 and w′x + b = −1 under
the condition that these two planes completely separate the positive and negative classes. Once such
w and b are found, the SVM classification rule is sign(w′x + b). Most often the two classes in the
training set are not linearly separable, then constraints (1.1) and (1.2) cannot be satisfied simultane-
ously. The commonly used soft margin SVM (Cortes and Vspnik, 1995) deals with a nonseparable
case by incorporating nonnegative slack variables into the hard margin SVM, resulting in a quadratic
programming problem: Find w ∈ Rd, b ∈ R, and ξi, i = 1, . . . , n, to minimize

λ∥w∥2 + 1
n

∑
i

ξi,

under the constraints

w′xi + b ≥ +1 − ξi, for yi = +1; (1.3)
w′xi + b ≤ −1 + ξi, for yi = −1; (1.4)

ξi ≥ 0, for all i,

where λ ≥ 0 is a control parameter to be chosen by the user. Often only a small fraction of the training
points enter the final solution. Such sparsity enables fast implementation of the SVM.

The constraints (1.3) and (1.4) can be combined as ξi ≥ 1−yi(w′xi+b), i = 1, . . . , n, and the linear
SVM is equivalent to

1
n

n∑
i=1

{
1 − yi(w′xi + b)

}
+ + λ∥w∥2,

where the function (·)+ is defined as

τ+ =

{
τ, τ > 0,
0, τ < 0,

which is called the hinge loss function. Therefore it is easy to see that in the population space the
linear SVM is to minimize

E[{1 − Y f (X)}+] + λ∞J( f ),

where f (X) = w′X + b and J( f ) = ∥w∥2, and λ∞ is usually set to be zero.
For early references to theoretical results on the SVM, see Vapnik (1999), Cristianini and Shawe-

Taylor (2000), and Schölkopf and Smola (2001). Such results typically bound the generalization
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error of the SVM with empirical quantities related to the margins of the training sample points, or
the empirical misclassification error. In most practical situations the Bayes optimal risk RB is not
zero, therefore any upper bound of the generalization error cannot go to zero. It is more appropriate
to study the difference between the generalization error and the Bayes optimal risk, rather than the
generalization error itself. The consistency properties of the SVM and its rate of convergence to the
Bayes optimal risk have been well studied in Lin (2000, 2004); Zhang (2004); Steinwart (2005);
Bartlett et al. (2006); Steinwart and Scovel (2007); Xu et al. (2009) and the risk function of the SVM
associated with the hinge loss is studied in Blanchard et al. (2008). Particularly, Lin (2004) showed
that, when the specification of the target function is flexible enough, the SVM procedure achieves the
same decision boundary as the Bayes optimal rule in the population space, thus the Bayes optimal
risk. This property is referred to as the Fisher consistency of a classification procedure. In a different
line of research, Koo et al. (2008) studied asymptotic properties of the coefficients of variables in the
linear SVM solution around the population minimizer.

However, the investigation of the consistency properties of the linear SVM is still limited. In
the simple case of two normal class densities with a common covariance where the Bayes optimal
decision boundary is linear, it has been unclear whether the linear SVM achieves the optimal boundary.
Answering to this question is of natural interest since the SVM is known to be Fisher consistent and
the linear SVM models the decision boundary as a linear function. In this paper, we explore this
problem and show that the linear SVM can be inconsistent even in standard Gaussian classification
problems. Section 2 considers a simple one-dimensional classification problem with two Gaussian
classes, and investigate the conditions under which the linear SVM can achieve the Bayes optimal
rule as well as the conditions it cannot. A discussion is given in Section 3.

2. Consistency of Linear SVM

In this section, we consider the linear SVM in one-dimensional Gaussian classification problem with
a common variance. We show that the linear SVM is consistent to estimate the optimal classification
boundary if the prior class probabilities are equal and we have the freedom to pick the best tuning
parameter λ for λ∞. We also show that, surprisingly, the linear SVM is inconsistent under some
conditions even when the best possible tuning parameter is used.

Without loss of generality, suppose that the prior class probabilities π0 and π1 are positive and the
class densities are X|{Y = −1} ∼ N(0, 1), X|{Y = +1} ∼ N(θ, 1), with θ > 0. Denote the pdf and the
cdf of N(0, 1) by ϕ(·) and Φ(·) respectively. The population version of the SVM is to minimize

R(α, β) = λα2 + E[{1 − Y(αX + β)}+] (2.1)

= λα2 + π1E[{1 − (αX + β)}+|Y = 1] + π0E[{1 + (αX + β)}+|Y = −1]

= λα2 + π1

∫ ∞

−∞
{1 − (αx + β)}+ϕ(x − θ)dx + π0

∫ ∞

−∞
{1 + (αx + β)}+ϕ(x)dx.

Since convexity is preserved under expectations, R(α, β) is convex in (α, β). The existence of a global
minimizer is established in the following proposition.

Proposition 1. There exists a global minimizer to the population version of the SVM (2.1) for any
λ ≥ 0.
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Proof: First consider the case α > 0. Then,

R(α, β) = λα2 + π1

∫ 1−β
α

−∞
(1 − β − αx)ϕ(x − θ)dx + π0

∫ ∞

− 1+β
α

(1 + β + αx)ϕ(x)dx

= λα2 + π1

∫ 1−β
α

−∞
(1 − β − αx)ϕ(x − θ)dx + π0

∫ 1+β
α

−∞
(1 + β − αx)ϕ(x)dx (2.2)

= λα2 + π1α

∫ 1−β
α

−∞
Φ(x − θ)dx + π0α

∫ 1+β
α

−∞
Φ(x)dx (2.3)

= λα2 + π1α

∫ 1−β
α −θ

−∞
Φ(x)dx + π0α

∫ 1+β
α

−∞
Φ(x)dx. (2.4)

The third step to obtain (2.3) uses integration by parts. Similar calculation gives that for α < 0,

R(α, β) = λα2 − π1α

∫ − 1−β
α +θ

−∞
Φ(x)dx − π0α

∫ − 1+β
α

−∞
Φ(x)dx. (2.5)

Thus for any α , 0,

R(α, β) ≥ π1|α|
∫ 1−β

|α| −θ

−∞
Φ(x)dx + π0|α|

∫ 1+β
|α|

−∞
Φ(x)dx

≥ |α|

∫ 1−β

|α| −θ

−∞
Φ(x)dx +

∫ 1+β
|α|

−∞
Φ(x)dx

 min(π0, π1)

≥ |α|
2

∫ 1
|α|−

θ
2

−∞
Φ(x)dx

 min(π0, π1).

The last step uses that the function
∫ t
−∞Φ(s)ds is strictly convex in t, since ϕ(t) > 0 for any t. The last

expression involves only α and goes to infinity as |α| → ∞. One can choose C1 > 0 independent of β
such that for any |α| > C1, R(α, β) > R(0, 0). However, for any |α| ≤ C1, we have

R(α, β) = λα2 + π1E[{1 − (αX + β)}+|Y = 1] + π0E[{1 + (αX + β)}+|Y = −1]
≥ π1E{1 − (αX + β)|Y = 1}
= π1{1 − (αθ + β)}
≥ π1(−β −C1θ).

Similarly we have R(α, β) ≥ π0(1 + β), and there exists C2 > 0, such that R(α, β) > R(0, 0) for any
|β| > C2 and |α| ≤ C1. Thus, any (α, β) outside the set C = [−C1,C1] × [−C2,C2] cannot be a global
minimizer since (0, 0) attains a smaller value. Since R(α, β) is convex, if there is a minimizer (ᾱ, β̄)
over C, this must be a global minimizer. The existence of (ᾱ, β̄) is ensured by that R(α, β) is continuous
and C is compact. Therefore, there exists a global minimizer of R(α, β) in C. �

In the following, Proposition 2 and Lemma 1 are used to show the main results in Proposition 3.

Proposition 2. For any λ ≥ 0, R(α, β) is strictly convex for α > 0.
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Proof: For α > 0, continuing with (2.2) and using the fact that ϕ′(t) = −tϕ(t), we have

R(α, β) = λα2 + π1

∫ 1−β
α

−∞
{1 − β − αθ − α(x − θ)} ϕ(x − θ)dx + π0

∫ 1+β
α

−∞
(1 + β − αx)ϕ(x)dx

= λα2 + π1(1 − β − αθ)Φ
(

1 − β
α
− θ

)
+ π1αϕ

(
1 − β
α
− θ

)
+ π0(1 + β)Φ

(
1 + β
α

)
+ π0αϕ

(
1 + β
α

)
. (2.6)

A straightforward calculation with (2.6) gives A straightforward calculation with (2.6) gives

∂R
∂α
= 2λα − π1θΦ

(
1 − β
α
− θ

)
+ π1ϕ

(
1 − β
α
− θ

)
+ π0ϕ

(
1 + β
α

)
,

∂R
∂β
= −π1Φ

(
1 − β
α
− θ

)
+ π0Φ

(
1 + β
α

)
.

A straightforward calculation with (2.6) gives

∂R
∂α
= 2λα − π1θΦ

(
1 − β
α
− θ

)
+ π1ϕ

(
1 − β
α
− θ

)
+ π0ϕ

(
1 + β
α

)
,

∂R
∂β
= −π1Φ

(
1 − β
α
− θ

)
+ π0Φ

(
1 + β
α

)
,

and

∂2R
∂α2 = 2λ + π1(1 − β)2α−3ϕ

(
1 − β
α
− θ

)
+ π0(1 + β)2α−3ϕ

(
1 + β
α

)
,

∂2R
∂α∂β

= π1(1 − β)α−2ϕ

(
1 − β
α
− θ

)
− π0(1 + β)α−2ϕ

(
1 + β
α

)
,

∂2R
∂β2 = π1α

−1ϕ

(
1 − β
α
− θ

)
+ π0α

−1ϕ

(
1 + β
α

)
.

The determinant of the Hessian of R(α, β) is

2λα−1
{
π1ϕ

(
1 − β
α
− θ

)
+ π0ϕ

(
1 + β
α

)}
+ 4π0π1α

−4ϕ

(
1 − β
α
− θ

)
ϕ

(
1 + β
α

)
> 0,

and ∂2R/∂α2 > 0. Therefore, R(α, β) is strictly convex for α > 0. �

Lemma 1. For all t ∈ R,

tΦ(t) + ϕ(t) > t+.

The function h(t) = tΦ(t) + ϕ(t) is convex, and limt→−∞ h(t) = 0 and limt→∞ h(t) − t = 0.

Proof: −tΦ(t) =
∫ t
−∞{−sϕ(s)−Φ(s)}ds <

∫ t
−∞ −sϕ(s)ds = ϕ(t). Therefore tΦ(t)+ϕ(t) > 0, for all t. By

plugging −t in the place of t, we get tΦ(t) + ϕ(t) > t, for all t. The rest of the proof is straightforward
and omitted. �
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Proposition 3.

(a) Any solution (ᾱ, β̄) to (2.1) should satisfy ᾱ ≥ 0.

(b) Suppose π1 , π0. Any solution (ᾱ, β̄) should satisfy ᾱ = 0 if and only if π1, π0 and θ satisfy that
for all t ∈ R,

min
{
π1

π0
,
π0

π1

}
(t + θ) ≤ tΦ(t) + ϕ(t). (2.7)

(c) If π1 = π0, the condition (2.7) does not hold and any solution (ᾱ, β̄) should satisfy ᾱ > 0.

(d) The solution is unique.

Proof:

(a) From (2.4) and (2.5), for any α > 0 and β ∈ R, R(−α, β) > R(α, β). Therefore, ᾱ cannot be
negative.

(b) Consider R(0, β) = E{1−Yβ}+ = π1(1−β)++π0(1+β)+ which is piecewise linear in β. If π1 < π0,
R(0, β) is uniquely minimized at β = −1 with minimum 2π1. If π1 > π0, R(0, β) is uniquely
minimized at β = +1 with minimum 2π0. If π1 = π0, R(0, β) is minimized at any point in [−1, 1]
with minimum 1.

(⇐) In the case π1 < π0, for any α > 0, β ∈ R,

R(α, β) = λα2 + π1α

{(
1 − β
α
− θ

)
Φ

(
1 − β
α
− θ

)
+ ϕ

(
1 − β
α
− θ

)}
+ π0α

{(
1 + β
α

)
Φ

(
1 + β
α

)
+ ϕ

(
1 + β
α

)}
> λα2 + π1α

(
1 − β
α
− θ

)
+ π0α

{(
1 + β
α

)
Φ

(
1 + β
α

)
+ ϕ

(
1 + β
α

)}
≥ λα2 + π1 (1 − β − αθ) + π1 (1 + β + αθ)

= λα2 + 2π1

≥ 2π1.

The second step uses Lemma 1 and the third step uses (2.7). Therefore, R(α, β) > 2π1 = R(0,−1)
for any α > 0 and β ∈ R, thus (ᾱ, β̄) with ᾱ > 0 cannot be a solution. When π1 > π0, a similar
argument gives that R(α, β) > 2π0 = R(0,+1) for any α > 0 and β ∈ R, and (ᾱ, β̄) with ᾱ > 0
cannot be a solution.

(⇒) We prove this by negation. Consider the case π1 > π0 and suppose that (2.7) does not hold,
then one can take k such that (k − θ)Φ(k − θ) + ϕ(k − θ) < kπ0/π1. For α > 0, if we choose a path
β(α) = 1 − kα, then

∂R(α, β(α))
∂α

= 2λα − π1θΦ(k − θ) + π1ϕ(k − θ) + π0ϕ

(
2
α
− k

)
− k

{
π0Φ

(
2
α
− k

)
− π1Φ(k − θ)

}
.
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R(α, 1 − kα) is decreasing at α = 0, since limα→+0 ∂R(α, β(α))/∂α = π1{(k − θ)Φ(k − θ) + ϕ(k −
θ) − kπ0/π1} < 0. Therefore, there exists a positive ᾱ∗ such that R(ᾱ∗, 1 − kᾱ∗) < R(0, 1) =
minβ∈RR(0, β).

When π1 < π0, supposing that (2.7) does not hold, one can take k such that kΦ(k) + ϕ(k) <
(k + θ)π1/π0. For α > 0, if we choose a path β(α) = −1 + kα, then

∂R(α, β(α))
∂α

= 2λα − π1θΦ

(
2
α
− k − θ

)
+ π1ϕ

(
2
α
− k − θ

)
+ π0ϕ(k)

+ k
{
π0Φ(k) − π1Φ

(
2
α
− k − θ

)}
.

R(α,−1 + kα) is decreasing at α = 0, since limα→+0 ∂R(α, β(α))/∂α = π0{kΦ(k) + ϕ(k) − (k +
θ)π1/π0} < 0. Therefore there exists a positive ᾱ∗ such that R(ᾱ∗,−1 + kᾱ∗) < R(0,−1) =
minβ∈RR(0, β).

(c) If the condition (2.7) holds, π1 and π0 cannot be the same since θ > 0. Since R(0, β) is minimized
at any point in [−1, 1] with minimum 1 when π1 = π0, we have minβ∈RR(0, β) = R(0, 0). On the
other hand R(α, 0) is continuous in α and limα→+0 ∂R(α, 0)/∂α = −π1θ < 0 from

∂R(α, 0)
∂α

= 2λα − π1θΦ

(
1
α
− θ

)
+ π1ϕ

(
1
α
− θ

)
+ π0ϕ

(
1
α

)
.

R(α, 0) is decreasing at α = 0 and there exists a positive ᾱ∗ such that R(ᾱ∗, 0) < R(0, 0). Therefore
ᾱ cannot be zero.

(d) If the condition (2.7) holds, then ᾱ cannot be positive. So, the solution can be found by minimizing
R(0, β), and is unique since π1 , π0. If the condition (2.7) does not hold, then uniqueness follows
from that one cannot have a minimizer with ᾱ = 0 and R(α, β) is strictly convex when α > 0 by
Proposition 2. �

Proposition 3 (a) states that the SVM classifier in the population space, sign{ᾱx + β̄} cannot have
ᾱ < 0. This is natural as we assume the class mean θ for class +1 is positive.

For Proposition 3 (b), the condition (2.7) can be written in a different form. The tangent line to
y = tΦ(t) + ϕ(t) at t = t0 is y = Φ(t0)t + ϕ(t0). We have at + b ≤ tΦ(t) + ϕ(t),∀t if and only if there
exists t0 such that at + b ≤ Φ(t0)t + ϕ(t0),∀t, i.e., a − Φ(t0) = 0 and b − ϕ(t0) ≤ 0. Therefore, the
condition is equivalent to b ≤ ϕ(Φ−1(a)). Letting ρ = log(π1/π0) and taking a = e−|ρ| and b = e−|ρ|θ,
we obtain the following.

Remark 1. The condition (2.7) is equivalent to θ ≤ e|ρ|ϕ{Φ−1(e−|ρ|)}.

Figure 1 shows the boundary for the condition (2.7) and we have ᾱ = 0 under the curve. In this area,
the classifier is sign{ᾱx + β̄} = sign{β̄}, thus the classifier does not consider the x value and all the
cases are classified into the same class. Since R(0, β) = π1(1− β)+ + π0(1+ β)+ is uniquely minimized
at β = −1 when π1 < π0, all the cases are classified into −1 in the left side under the curve. Likewise,
all the cases are classified into +1 in the right side under the curve.

The following theorem is from Li and Duan (1989), Theorem 5.1, and used to show that the one
dimensional linear SVM can be consistent when π0 = π1 = 1/2.
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Figure 1: Boundary for the condition (2.7). The curve corresponds to θ = e|ρ|ϕ{Φ−1(e−|ρ|)}, where ρ = log(π1/π0).
The solution is (ᾱ, β̄) = (0,−1) in the left side under the curve and (ᾱ, β̄) = (0,+1) in the right side under the

curve.

Theorem 1. For a loss function L(θ, y), if a linear classification method of the form

min
w,b

Rλ(w, b) = min
w,b

[
E{L(w′X + b,Y)} + λw′w

]
.

in the population space has a unique solution (w̄, b̄), then the set of estimates (ŵ, b̂) from its empirical
version

min
w,b

n−1
∑

i

L
(
w′xi + b, yi

)
+ λnw′w

 .
with λn → λ converges almost surely to the solution.

Proposition 4. When π0 = π1 = 1/2, the one dimensional linear SVM leads to consistent classifi-
cation if we have the freedom to pick any sequence λn ≥ 0.

Proof: Let us take any S > 0 such that

θΦ
(
S − θ

2

)
− 2ϕ

(
S − θ

2

)
> 0.

This is always possible since the left hand side goes to θ > 0 as S → ∞. Take λ = {θΦ(S − θ/2) −
2ϕ(S − θ/2)}S/4. Then it is easy to check that at (1/S ,−θ/(2S )), both ∂R/∂α and ∂R/∂β are zero,
therefore (1/S ,−θ/(2S )) is the unique global solution since 1/S > 0. The classification decision is
sign{x/S − θ/(2S )} = sign(x − θ/2), which is the Bayes optimal rule. Therefore by Theorem 1, the
one dimensional linear SVM with a choice of λ can be consistent. �
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3. Discussion

In the Gaussian classification problem with a common covariance, it is well known that the Bayes
optimal classification boundary is linear. The SVM procedure is known to be Fisher consistent with
flexible specification, and the linear SVM models the decision boundary as a linear function. There-
fore it is of interest whether the linear SVM achieves the optimal classification boundary. In this paper,
we consider the univariate Gaussian classification problem with a common variance and show that the
linear SVM can be consistent if the prior probabilities are the same but it is not consistent with the
condition (2.7). It is still unclear if the linear SVM can achieve the optimal classification boundary in
the case where π0 , π1 but the condition (2.7) does not hold, although we conjecture that the linear
SVM does not lead to consistent classification for this case either. This merits further investigations
in the future study.
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