Abstract
In this paper, we propose a Musical Score Recognition with SOM and Enhanced ART-1 Algorithm. First, we apply Hough transform and Otsu's binarization to the original BMP format image and extract notes from separated passages by histogram analysis with removing staff lines. Then extracted musical notes are normalized to same size by SOM algorithm and ART-1 algorithm plays the learning and recognition role. The experiment verifies that the proposed method is quite effective on printed musical score recognition.
본 논문에서는 SOM과 개선된 ART-1을 이용하여 악보를 인식하는 방법을 제안한다. 악보 인식을 위해 스캔된 악보 이미지를 호프 변환, Otsu's 이진화를 원본 이미지에 적용하고, 히스토그램 분석을 통해 구분된 작은악절에서 오선을 제거하여 악보의 음표 성분을 추출할 수 있는 이미지 전처리 단계를 수행한다. 오선이 제거된 작은악절은 레이블링을 이용하여 음표 성분을 분리한다. 추출된 음표들은 SOM 알고리즘을 적용하여 일정한 크기로 정규화하고, 정규화된 음표 정보들을 개선된 ART-I 알고리즘을 적용하여 학습과 인식한다. 제안된 방법을 적용하여 음표 인식 실험을 한 결과, 제안된 방법이 음표 인식에 효율적임을 확인하였다.