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ON THE GALERKIN-WAVELET METHOD FOR HIGHER

ORDER DIFFERENTIAL EQUATIONS

Naohiro Fukuda, Tamotu Kinoshita, and Takayuki Kubo

Abstract. The Galerkin method has been developed mainly for 2nd
order differential equations. To get numerical solutions, there are some
choices of Riesz bases for the approximation subspace Vj ⊂ L2. In this
paper we shall propose a uniform approach to find suitable Riesz bases
for higher order differential equations. Especially for the beam equation
(4-th order equation), we also report numerical results.

1. Introduction

1.1. The Galerkin method

The Galerkin method is a numerical method for converting a continuous
operator problem to a discrete problem (see, [10, 13, 15], etc.). With respect
to the bilinear form, the approximation error between the solution u of the
differential equation and the solution uj of the Galerkin equation is orthog-
onal to the approximation subspace Vj ⊂ L2, where j is a fixed dilation pa-
rameter. For instance, let us consider the 2m-th order differential equation

(−1)m d2m

dx2mu+u = f and its Galerkin equation a(uj , ϕj,k) = 〈f, ϕj,k〉L2 , where

a(g, φ) = 〈g, φ〉L2 +

〈

dm

dxm
g,

dm

dxm
φ

〉

L2

.

Then the error ej := u− uj satisfies by integration by parts

a(ej , ϕj,k) =

〈(

(−1)m
d2m

dx2m
+ 1

)

u, ϕj,k

〉

L2

− a(uj , ϕj,k) = 0

for all ϕj,k(k ∈ Z), where k is the translation parameter to span the whole Vj .
The subspace Vj on which u is projected, characterizes the visual shape of uj .
However, it is not always concerned with the sharpness of the approximation,
because the residual error ej is often estimated by the base which is not uniquely
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determined for the subspace Vj . So, the choices of the subspace and its base
are up to us.

Generally, the compactly-supported bases are preferable to get numerical
solutions of differential equations. In particular, the Galerkin method with
piecewise polynomials called Finite element method (FEM). These compactly-
supported bases enable us to localize a few elements in the whole interval,
but are not orthogonal in translation. The Galerkin-wavelet method can be
dealt with the (sufficiently smooth) Daubechies scaling function (or wavelet)
which is not only orthogonal but also compactly-supported (see [1, 5]). To get
a better approximation, there are two ways: by increasing the degree of the
scaling function (or wavelet) and the level j. In general, the stiffness matrix
with orthogonal bases are full. To consider higher order differential equations,
orthogonal bases require many computations of stiffness matrix. In this pa-
per, our aim is to find suitable (non orthogonal) Riesz bases for higher order
differential equations in the sense that stiffness matrices are more sparse.

1.2. Uniform approach to find suitable bases

According to differential equations, we expect certain smoothness (at least
Lipschitz continuity) for the subspace. Let us put the B-splines of orders 1 and
2 as follows:

N1(x) =

{

1 if 0 ≤ x ≤ 1,
0 otherwise,

N2(x) =







x if 0 ≤ x ≤ 1,
2− x if 1 ≤ x ≤ 2,
0 otherwise.

N1(x) is called the Haar scaling function. {N2(x − k) : k ∈ Z} which is a
Riesz basis for the space V0 of piecewise linear continuous functions on the
intervals [k, k+ 1] for all k ∈ Z, is used in the standard FEM. We remark that
the Franklin scaling function and the Strömberg scaling function can be also
orthogonal bases for V0 (see [7, 11, 14]). The Lipschitz continuity of functions
in the subspace comes from the property of these bases. Therefore, our task is
to determine a base scaling function rather than a subspace.

From the point of view of the study of differential equations, the coefficient
of the highest order derivative has much more influence on the behavior of
the solution. After the translation of the continuous problem into the discrete
one, if the matrix corresponding to the principal part becomes simpler, the ap-
proximate solution will be more stable as an appropriate numerical treatment.
In this section we shall give a uniform approach to find suitable bases such
that the matrix corresponding to the principal part has just a form of 3-point
formula or more generally, (2m+ 1)-point formula.

At first, for the simplicity, let us consider the 2nd order equation− d2

dx2u+u =
f and V0, i.e., j = 0. We are concerned with the following matrix coming from
the principal part:

ak,ℓ := −
〈

d

dx
ϕ0,k,

d

dx
ϕ0,ℓ

〉

L2

(

=

〈

d2

dx2
ϕ0,k, ϕ0,ℓ

〉

L2

if ϕ ∈ C2
)

.



ON THE GALERKIN-WAVELET METHOD 965

Since ϕ0,k(x) = ϕ(x − k), by Parseval’s theorem we see that
〈

d

dx
ϕ0,k,

d

dx
ϕ0,ℓ

〉

L2

=
1

2π

〈

iξe−ikξϕ̂, iξe−iℓξϕ̂
〉

L2 = F−1
[

∣

∣ξϕ̂(ξ)
∣

∣

2
]

(ℓ− k).

On the other hand, in order to get 3-point formula for 2nd order derivative, we
need the tridiagonal matrix

(1.1)
{

ak,ℓ
}

1≤k,ℓ≤N
=

























−2 1 0 · · · · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 1 −2 1
0 · · · · · · 0 0 1 −2

























,

where N depends on the interval in which − d2

dx2u+ u = f is considered. Thus,
ϕ must satisfy the condition

(1.2) F−1
[

∣

∣ξϕ̂(ξ)
∣

∣

2
]

(ℓ− k) =







2 if k = ℓ,
−1 if k = ℓ± 1,
0 otherwise.

It would not be easy to find ϕ from (1.2). Therefore, we shall try to change
the condition (1.2).

Further computations yield

F−1
[

∣

∣ξϕ̂(ξ)
∣

∣

2
]

(ℓ− k) =
1

2π

∑

q∈Z

∫ 2(q+1)π

2qπ

ei(ℓ−k)ξ
∣

∣ξϕ̂(ξ)
∣

∣

2
dξ

=
1

2π

∑

q∈Z

∫ 2π

0

ei(ℓ−k)ξ
∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2
dξ

=
1

2π

∫ 2π

0

ei(ℓ−k)ξ
∑

q∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2
dξ.

Hence, we find that (1.2) is equivalent to

∑

q∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2 ≡ −eiξ + 2ei0ξ − e−iξ
(

= 4 sin2
ξ

2

)

for almost everywhere ξ ∈ R. Denoting the sinc function by sinc ξ = sin ξ
ξ , we

see that the Haar scaling function N1(x) satisfies N̂1(ξ) = e−iξ/2sinc ξ
2 . We

shall define Φ(x) by

(1.3) Φ̂(ξ) =
ϕ̂(ξ)

N̂1(ξ)
.
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Then we also get

∑

q∈Z

∣

∣Φ̂(ξ + 2qπ)
∣

∣

2
=
∑

q∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2

4 sin2 ξ+2qπ
2

=

∑

q∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2

−eiξ + 2ei0ξ − e−iξ
,

here we used

4 sin2
ξ + 2qπ

2
= 4 sin2

ξ

2
= −eiξ + 2ei0ξ − e−iξ.

This means that

(1.4)
∑

q∈Z

∣

∣Φ̂(ξ + 2qπ)
∣

∣

2 ≡ 1 a.e. ξ ∈ R.

So, the condition (1.2) has been reduced to the conditions (1.3) and (1.4).
Now we can easily find ϕ from (1.3) and (1.4), because the identity (1.4) is
well-known as the orthonormal condition. The definition (1.3) yields

(1.5) ϕ(x) = F−1
[

N̂1(ξ)Φ̂(ξ)
]

(x) = N1 ∗ Φ(x)
(

=

∫ x

x−1

Φ(y)dy
)

.

The new function ϕ is the elevation of Φ with N1. Therefore N1 is also called
the elevator (see [16, 17]). More generally, let us represent the elevator by E
and define

(1.6) ϕ(x) = E ∗ Φ(x).
Remark 1.1. The most typical example is the case when the elevator E(x) is
N1(x) and Φ(x) is the Haar scaling function, i.e., E(x) = Φ(x) = N1(x). By
(1.5) we obtain

ϕ(x) = N1 ∗N1(x) = N2(x).

This case just coincides with the standard FEM. Choosing other scaling func-
tions for Φ(x), we can obtain various types of bases.

1.3. Definition of elevator

We shall derive some properties for the case when the elevator E(x) is N1(x).
By Taylor expansion we see that for v ∈ C4

(1.7)

1
∑

ν=−1

ak,k+νv(x + νh) = h2
d2

dx2
v(x) +O(h4) for all k ∈ Z.

Moreover, we assume that

(1.8) Φ̂(0) = 1,

which allows scaling functions, but excludes wavelet functions. Hence, by (1.5)
it follows that

∑

k∈Z

ϕj,k(x) =
∑

k∈Z

ϕ(2jx− k) =
∑

k∈Z

∫ 2jx−k

2jx−k−1

Φ(y)dy
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=

∫ ∞

−∞
Φ(y)dy = Φ̂(0) = 1.(1.9)

This is just the partition of unity. Let us put h = 2−j and

wj(x) =
∑

ℓ∈Z

wj,ℓϕj,ℓ(x).

If wj is sufficiently smooth and ϕ has compact support (or decays sufficiently
fast), by (1.9) we have for k ∈ Z

(1.10) wj(kh) =
∑

ℓ∈Z

wj,ℓϕj,ℓ(kh) ∼ wj,k

∑

ℓ∈Z

ϕj,ℓ(kh) = wj,k.

Indeed, it holds that wj(kh) = wj,k in the standard FEM.
Meanwhile we also get the following identity:

∑

q∈Z

∣

∣ϕ̂(ξ + 2qπ)
∣

∣

2
=

∑

ν∈Z

ck,k+νe
iνξ,

where ck,ℓ := 〈ϕ0,k, ϕ0,ℓ〉L2 . In particular, taking ξ = 0, by (1.3) and (1.8) we
find that for all k ∈ Z

∑

ν∈Z

ck,k+ν =
∑

q∈Z

∣

∣ϕ̂(2qπ)
∣

∣

2
=

∑

q∈Z

∣

∣N̂1(2qπ)Φ̂(2qπ)
∣

∣

2
=

∣

∣Φ̂(0)
∣

∣

2
= 1,

here we used Φ̂(2qπ) = 0 if q 6= 0, since
∑

q 6=0

∣

∣

∣
Φ̂(2qπ)

∣

∣

∣

2

−
∣

∣

∣
Φ̂(0)

∣

∣

∣

2

= 0 by (1.8)

and (1.4) with ξ = 0. Noting that ck,k+ν = ck,k−ν , by Taylor expansion we see
that for v ∈ C2

0

(1.11)
∑

ν∈Z

ck,k+ν v(x + νh) = v(x) +O(h2) for all k ∈ Z.

In our construction, to get the approximate solution uj(x)=
∑

ℓ∈Z
uj,ℓϕj,ℓ(x)

in the interval (0, 1) for the equation − d2

dx2u + u = f , we solve the following
system corresponding to the Galerkin equation:

[

−
{

ak,ℓh
−2

}

1≤k,ℓ≤N
+
{

ck,ℓh
}

1≤k,ℓ≤N

]

t
{

uj,ℓ
}

1≤ℓ≤N

=
{

ck,ℓ
}

1≤k,ℓ≤N
t
{

fj,ℓ
}

1≤ℓ≤N
.

By (1.10) this can be regarded as
[

−
{

ak,ℓh
−2

}

1≤k,ℓ≤N
+
{

ck,ℓh
}

1≤k,ℓ≤N

]

t
{

uj(ℓh)
}

1≤ℓ≤N

=
{

ck,ℓ
}

1≤k,ℓ≤N
t
{

fj(ℓh)
}

1≤ℓ≤N
.

Paying attention to each row, by (1.7) and (1.11) we find that

−
∑

1≤ℓ≤2j

ak,ℓh
−2uj(ℓh) = −

∑

ν

ak,k+νh
−2uj(kh+ νh)=− d2

dx2
uj(kh) +O(h2),
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∑

1≤ℓ≤2j

ck,ℓuj(ℓh) =
∑

ν

ck,k+νuj(kh+ νh) = uj(kh) +O(h2),

∑

1≤ℓ≤2j

ck,ℓfj(ℓh) =
∑

ν

ck,k+νfj(kh+ νh) = fj(kh) +O(h2).

These give the numerical difference equation of the original differential equation

− d2

dx2u + u = f at the point x = kh. The accuracy of (1.10) depends on the
case of application. We remark that (1.7) and (1.11) play an important role to
guarantee the accuracy.

From the above observations for E = N1, we shall propose the following
conditions to characterize qualitative elevators for the Galerkin method:

Definition 1.1. Let Φ be a scaling function such that Φ̂(0) = 1 and Φ̂(ξ) 6= 0
for −π ≤ ξ ≤ π. Put ck,ℓ := 〈ϕ0,k, ϕ0,ℓ〉L2 and ak,ℓ := −〈 d

dxϕ0,k,
d
dxϕ0,ℓ〉L2

for ϕ(x) = E ∗ Φ(x). The elevator E for the Galerkin method is a function
satisfying

(i) Ê(ξ) 6= 0 for −π ≤ ξ ≤ π, in particular, Ê(0) = 1.
(ii) It holds that for v ∈ C4

0
∑

ν∈Z

ck,k+ν v(x + νh) = v(x) +O(h2),

∑

ν∈Z

ak,k+νv(x + νh) = h2
d2

dx2
v(x) +O(h4).

(iii) There exists a 2π-periodic function mE(ξ) such that Ê(2ξ) = mE(ξ)Ê(ξ).
It is known that the exact frame is equivalent to the Riesz basis. The

condition for the Riesz basis is given by

(1.12) A ≤
∑

q∈Z

∣

∣ϕ̂(ξ + 2qπ)
∣

∣

2 ≤ B

for 0 < A ≤ B <∞ (see [2]). If Φ̂(ξ) 6= 0 for −π ≤ ξ ≤ π, by (i) we note that
∑

q∈Z

∣

∣ϕ̂(ξ + 2qπ)
∣

∣

2
=

∑

q∈Z

∣

∣Ê(ξ + 2qπ)Φ̂(ξ + 2qπ)
∣

∣

2

≥
∣

∣Ê(ξ − 2nπ)Φ̂(ξ − 2nπ)
∣

∣

2

≥ ∃A > 0

for 2nπ−π ≤ ξ ≤ 2nπ+π (n ∈ Z), that is, ξ ∈ R. Rewriting ϕ(x) = N1 ∗Φ♯(x)

with Φ̂♯(ξ) = Ê(ξ)Φ̂(ξ)

N̂1(ξ)
, from (i) we can expect that the properties corresponding

to (1.9), (1.10) and (1.11) still hold, since Φ̂♯(0) = 1. In fact, we may omit
∑

ν∈Z
ck,k+ν v(x + νh) = v(x) +O(h2) in (ii).

Replacing the definition ϕj,k(x) = ϕ(2jx − k) by ϕj,k(x) = 2j/2ϕ(2jx −
k), we could also get wavelet expansions. Thanks to the condition (iii) we

obtain a semi-orthogonal wavelet ψ̂(ξ) = eiξ/2m(ξ/2 + π)ϕ̂(ξ/2), wherem(ξ) =
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mϕ(ξ)
∑

q∈Z
|ϕ̂(ξ + 2qπ)|2 = mE(ξ)mΦ(ξ)

∑

ν∈Z
ck,k+νe

iνξ (2π-periodic). A

biorthogonal wavelet for the elevated ϕ can be also considered (see [6]). By (1.7)
we have already found the elevator E which allows the finite sum of ak,k+νv(x+
νh) in (ii) and improves the standard FEM with ϕ = N2 in §4.

2. Riesz basis of Daubechies type

2.1. 3-point formula for 2nd order derivative

To get compactly-supported and also more smooth base than N2, we may
choose the Daubechies scaling function of order p for Φ ≡ ΦD

p satisfying (1.8).
Then by (1.5) we have

(2.1) ϕD
p (x) = N1 ∗ ΦD

p (x).

0 1 2 3 40.5 1.5 2.5 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

(a) ϕD
2

(

supp ϕD
2 ⊂ [0, 4]

)

0 1 2 3 4 5 60.5 1.5 2.5 3.5 4.5 5.5
-0.2

0

0.2

0.4

0.6

0.8

1

(b) ϕD
3

(

supp ϕD
3 ⊂ [0, 6]

)

Figure 1. Graphs of ϕD
2 and ϕD

3 .
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The basis {ϕD
p (x − k) : k ∈ Z} had been derived by [16] and [17]. Their

approach is motivated from the observation that the integration of the Haar
wavelet becomes N2. Therefore, the pseudoframe was firstly considered by the
integration of the Daubechies wavelet, and secondly it was arranged for the
efficiency of the computation and arrived at ϕD

p (see also [12]).

In order to solve numerically the equation − d2

dx2u + u = f with some

base {ϕ(x − k) : k ∈ Z}, we need to know the matrices
{

ck,ℓ
}

1≤k,ℓ≤N
and

{

ak,ℓ
}

1≤k,ℓ≤N
. If one considers the orthogonal Daubechies scaling function,

it holds that the matrix
{

ck,ℓ
}

1≤k,ℓ≤N
= I. On the other hand, the matrix

{

ak,ℓ
}

1≤k,ℓ≤N
for the Daubechies scaling function is well studied in [1]. For

all the bases constructed by the approach in §1.2, the matrix
{

ak,ℓ
}

1≤k,ℓ≤N
is

just (1.1).

Remark 2.1. It would be preferable that bases are at least C1 or Lipschitz

continuous as N2 in order that the weak form −〈 d
dxϕ0,k,

d
dxϕ0,ℓ〉L2 of 〈 d2

dx2ϕ0,k,
ϕ0,ℓ〉L2 has a meaning. Especially for p = 2, the Daubechies scaling function
ΦD

2 ∈ C0.55 fails to satisfy the differentiability, but gives ϕD
2 ∈ C1.55.

We shall also compute the exact value of ck,ℓ for ϕD
2 (x). Putting φ̂(ξ) =

∣

∣ϕ̂D
2 (ξ)

∣

∣

2
, by Parseval’s theorem we have

ck,ℓ = 〈ϕD
2 (x− k), ϕD

2 (x − ℓ)〉L2 = φ(ℓ− k).

By (2.1) it holds that

φ̂(ξ) = sinc2
ξ

2
Φ̂D

2 (ξ)2 =

∞
∏

j=1

cos2
(

ξ

2j+1

) ∣

∣

∣

∣

mD
2

(

ξ

2j

)∣

∣

∣

∣

2

≡
∞
∏

j=1

m̃

(

ξ

2j

)

,

where mD
2 is the Daubechies low pass filter. Since mD

2 (ξ) =
∑3

k=0 ηke
−ikξ with

{η0, η1, η2, η3} =
{

1+
√
3

8 , 3+
√
3

8 , 3−
√
3

8 , 1−
√
3

8

}

and cos2 ξ = e2iξ+2+e−2iξ

4 , we find

that m̃(ξ) =
∑4

k=−4 µke
−ikξ and its coefficients are given by

{µ0, µ±1, µ±2, µ±3, µ±4} =

{

25

64
,
17

64
,
1

16
,− 1

64
,− 1

128

}

.

The function φ satisfies

φ(x) = 2

4
∑

k=−4

µkφ(2x− k)

and supp φ ⊂ [−4, 4] since supp ϕD
2 ⊂ [0, 4] and φ(x) =

∫

R
ϕD
2 (t + x)ϕD

2 (t)dt.
Hence we have

M t{φ(k)}−3≤k≤3 = 0,
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where

M =





















1− 2µ−3 −2µ−4 0 0 0 0 0
−2µ−1 1− 2µ−2 −2µ−3 −2µ−4 0 0 0
−2µ1 −2µ0 1− 2µ−1 −2µ−2 −2µ−3 −2µ−4 0
−2µ3 −2µ2 −2µ1 1− 2µ0 −2µ−1 −2µ−2 −2µ−3

0 −2µ4 −2µ3 −2µ2 1− 2µ1 −2µ0 −2µ−1

0 0 0 −2µ4 −2µ3 1− 2µ2 −2µ1

0 0 0 0 0 −2µ4 1− 2µ3





















.

We also remark that
∑3

k=−3 φ(k) =
∑

k∈Z
φ(k) =

∫

R

1
2π

∑

k∈Z
eikξφ̂(ξ)dξ =

φ̂(0) = 1. Deriving the eigenvector with 0 eigenvalue such that
∑3

k=−3 φ(k) = 1,
we find that

{φ(0), φ(±1), φ(±2), φ(±3)} =

{

131

180
,
37

240
,− 11

600
,

1

3600

}

.

Thus we obtain

ck,ℓ

(

= φ(l − k)
)

=























131/180 if k = ℓ,
37/240 if k = ℓ± 1,
−11/600 if k = ℓ± 2,
1/3600 if k = ℓ± 3,

0 otherwise.

Consequently, we get the following theorem:

Theorem 2.1. For ϕD
2 (x) defined by (2.1) with Φ = ΦD

2 we have

(2.2)

ck,ℓ =























131/180 if k = ℓ,
37/240 if k = ℓ± 1,
−11/600 if k = ℓ± 2,
1/3600 if k = ℓ± 3.

0 otherwise,

and ak,ℓ =







−2 if k = ℓ,
1 if k = ℓ± 1,
0 otherwise.

Moreover, it holds that for v ∈ C4
0

∑

ν∈Z

ck,k+ν v(x+ νh) = v(x) +O(h2),

1
∑

ν=−1

ak,k+νv(x+ νh) = h2
d2

dx2
v(x) +O(h4).
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2.2. 5-point formula for 2nd order derivative

With small changes of the approach in §1.2 we can also consider the 5-point
formula for 2nd order derivative. For this purpose, we replace (1.2) by

F−1
[

∣

∣ξϕ̂(ξ)
∣

∣

2
]

(ℓ − k) =















5
2 if k = ℓ,

− 4
3 if k = ℓ± 1,

1
12 if k = ℓ± 2,
0 otherwise,

which is equivalent to
∑

q∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2

≡ 1

12
e2iξ − 4

3
eiξ +

5

2
ei0ξ − 4

3
e−iξ +

1

12
e−2iξ

(

=
4

3
sin2

ξ

2

(

sin2
ξ

2
+ 3

))

for almost everywhere ξ ∈ R. We shall define Φ(x) by

(2.3) Φ̂(ξ) =
ϕ̂(ξ)

(γ− + γ+e−iξ)N̂1(ξ)
,

where γ± = 1
2 ± 1√

3
. Then we also get

∑

q∈Z

∣

∣Φ̂(ξ + 2qπ)
∣

∣

2
=

∑

q∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2

4 sin2 ξ+2qπ
2

∣

∣γ− + γ+e−i(ξ+2qπ)
∣

∣

2

=

∑

p∈Z

∣

∣(ξ + 2qπ)ϕ̂(ξ + 2qπ)
∣

∣

2

1
12e

2iξ − 4
3e

iξ + 5
2e

i0ξ − 4
3e

−iξ + 1
12e

−2iξ
,

here we used

4 sin2
ξ + 2qπ

2

∣

∣γ− + γ+e−i(ξ+2qπ)
∣

∣

2

= 4 sin2
ξ

2

∣

∣γ− + γ+e−iξ
∣

∣

2
=

4

3
sin2

ξ

2

(

sin2
ξ

2
+ 3

)

=
1

12
e2iξ − 4

3
eiξ +

5

2
ei0ξ − 4

3
e−iξ +

1

12
e−2iξ.

Hence, the identity (1.4) still holds. Thus, the definition (2.3) yields

(2.4) ϕ̃(x) =
{

γ−N1(·) + γ+N1(· − 1)
}

∗ Φ(x).

Let us put c̃k,ℓ := 〈ϕ̃0,k, ϕ̃0,ℓ〉L2 and ãk,ℓ := −〈 d
dx ϕ̃0,k,

d
dx ϕ̃0,ℓ〉L2 . Similarly

as §1.2, by (2.4) we also find that for all ℓ ∈ Z

∑

ν∈Z

c̃k,k+ν =
∑

q∈Z

∣

∣

{

γ−N̂1(2qπ) + γ+e−2qπiN̂1(2qπ)
}

Φ̂(2qπ)
∣

∣

2

=
∣

∣(γ− + γ+)Φ̂(0)
∣

∣

2
= 1.
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(a) Φ = ΦD
2 (supp ϕ̃ ⊂ [0, 5]).

0 1 2 30.5 1.5 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

(b) Φ = N1 (supp ϕ̃ ⊂ [0, 3]).

Figure 2. Graphs of ϕ̃ =
{

γ−N1(x) + γ+N1(x− 1)
}

∗ Φ(x).

We remark that E(x) = γ+N1(x− 1) + γ−N1(x) satisfies (i) in Definition 1.1,

since |Ê(ξ)| =
∣

∣γ− + γ+eiξ
∣

∣

∣

∣

∣sinc ξ
2

∣

∣

∣ =
√

1
3 sin

2 ξ
2

∣

∣

∣sinc ξ
2

∣

∣

∣.

It remains to compute the precise value of c̃k,ℓ for ϕ̃(x). Put ϕ = N1 ∗ Φ
and ck,ℓ = 〈ϕ0,k, ϕ0,ℓ〉L2 as in §2.1. Since ϕ̃(x) = γ−ϕ(x) + γ+ϕ(x− 1), we get

c̃k,ℓ = 〈γ−ϕ0,k + γ+ϕ0,k+1, γ
−ϕ0,ℓ + γ+ϕ0,ℓ+1〉L2

=
(

γ+
2
+ γ−

2
)

〈ϕ0,k, ϕ0,ℓ〉L2 + γ+γ−
(

〈ϕ0,k, ϕ0,ℓ+1〉L2 + 〈ϕ0,k+1, ϕ0,ℓ〉L2

)

=
7

6
ck,ℓ −

1

12
(ck,ℓ+1 + ck+1,ℓ) .
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In the case of Φ = ΦD
2 , each ck,ℓ is already given by (2.2). In the case of

Φ = N1, since ϕ = N2 we can easily see that

ck,ℓ =







2/3 if k = ℓ,
1/6 if k = ℓ± 1,
0 otherwise.

Consequently, we get the following theorem corresponding to Theorem 2.1:

Theorem 2.2. For ϕ̃D
2 (x) defined by (2.4) with Φ = ΦD

2 (resp. N1) we have

c̃k,ℓ =































3557/4320 if k = ℓ,
163/1350 if k = ℓ± 1,
−37/1080 if k = ℓ± 2,
1/540 if k = ℓ± 3,

−1/43200 if k = ℓ± 4,
0 otherwise,









resp. c̃k,ℓ =















3/4 if k = ℓ,
5/36 if k = ℓ± 1,
−1/72 if k = ℓ± 2,

0 otherwise,









and

(2.5) ãk,ℓ =















−5/2 if k = ℓ,
4/3 if k = ℓ± 1,

−1/12 if k = ℓ± 2,
0 otherwise .

Moreover, it holds that for v ∈ C6
0

∑

ν∈Z

c̃k,k+ν v(x+ νh) = v(x) +O(h2),

2
∑

ν=−2

ãk,k+νv(x+ νh) = h2
d2

dx2
v(x) +O(h6).

3. Riesz basis for higher order derivatives

3.1. (2m + 1)-point formula for 2m-th order derivative

Let Nm(x) be the B-spline of order m(≥ 1) which can be defined by (see [3])

N̂m(ξ) =
(1− e−iξ

iξ

)m

≡
{

N̂1(ξ)
}m

.

We shall consider the following instead of (1.3):

(3.1) Φ̂(ξ) =
ϕ̂(2m)(ξ)

N̂m(ξ)
.
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Combining (3.1) with (1.4) we obtain ϕ(2m)(x) with the elevator E(x) = Nm(x).
In this section, we shall derive a further property of the elevator Nm for appli-
cations of differential equations.

To get the (2m+ 1)-point formula for 2m-th order derivative, we must find

α
(r)
σ such that for any u ∈ C2m

lim
h→0

∑2m
σ=0 α

(2m)
σ u

(

x+ (m− σ)h
)

h2m
=

(

d

dx

)2m

u(x).

So, we expect that α
(2m)
σ ’s satisfy

(3.2)

2m
∑

σ=0

α(2m)
σ u

(

x+ (m− σ)h
)

= h2m
(

d

dx

)2m

u(x) +O(h2m+2).

In case when m = 1 and r = 2, we see that α
(2)
0 = 1, α

(2)
1 = −2 and α

(2)
2 = 1

satisfy α
(2)
0 u(x+h)+α

(2)
1 u(x)+α

(2)
2 u(x−h) = h2 d2

dx2u(x)+O(h
4). This is just

the case of 3-point formula for 2nd order derivative (see (2.2)). Using Taylor
expansion, we see that cancellations occur during the odd order derivatives.

Remark 3.1. α
(2m)
σ ’s uniquely determined later from (3.2) are the best constants

in sense that the remainder order is highest for the (2m+ 1)-point formula for
2m-th order derivative.

Using Taylor expansion for u
(

x+ (m− σ)h
)

in (3.2) and equating the coef-
ficients of equal order derivatives on both sides of (3.2), we have













1
0!

1
0! · · · 1

0!
(m−0)h

1!
(m−1)h

1! · · · (m−2m)h
1!

...
...

...
{(m−0)h}2m

(2m)!
{(m−1)h}2m

(2m)! · · · {(m−2m)h}2m

(2m)!

























α
(0)
0 α

(1)
0 · · · α

(2m)
0

α
(0)
1 α

(1)
1 · · · α

(2m)
1

...
...

...

α
(0)
2m α

(1)
2m · · · α

(2m)
2m













=











h0 0 · · · 0
0 h1 · · · 0
...

...
...

0 0 · · · h2m











.

Let us put λσ = m− σ and K =
{

α
(r)
σ

}

0≤σ,r≤2m
. Then we have













h0

0! 0 · · · 0

0 h1

1! · · · 0
...

...
...

0 0 · · · h2m

m!























1 1 · · · 1
λ0 λ1 · · · λ2m
...

...
...

λ2m0 λ2m1 · · · λ2m2m











K =











h0 0 · · · 0
0 h1 · · · 0
...

...
...

0 0 · · · h2m











.
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Hence, we can solve

K =











1 1 · · · 1
λ0 λ1 · · · λ2m
...

...
...

λ2m0 λ2m1 · · · λ2m2m











−1 









0! 0 · · · 0
0 1! · · · 0
...

...
...

0 0 · · · (2m)!











.

Our concern in this section is (2m + 1)-point formula for the highest even
2m-th order derivatives. Therefore, we need to know the (2m+1)-th and 2m-th
columns of the inverse matrix of the Vandermonde-type and ones of K. From
the formula of the inverse matrix of the Vandermonde-type in [4] we obtain

α(2m)
σ =

(2m)!
∏2m

ℓ=0,ℓ 6=σ(λℓ − λσ)
−

(2m− 1)!
∑2m

ℓ=0,ℓ 6=σ λℓ
∏2m

ℓ=0,ℓ 6=σ(λℓ − λσ)

for σ = 0, 1, . . . , 2m. We note that

2m
∑

ℓ=0,ℓ 6=σ

λℓ =
2m
∑

ℓ=0

λℓ − λσ = −λσ = σ −m

and
2m
∏

ℓ=0,ℓ 6=σ

(λℓ − λσ) =

σ−1
∏

ℓ=0

(λℓ − λσ)

2m
∏

ℓ=σ+1

(λℓ − λσ)

= (−1)2m−(σ+1)+1
σ−1
∏

ℓ=0

(σ − ℓ)

2m
∏

ℓ=σ+1

(ℓ− σ)

= (−1)−σσ!(2m− σ).

Hence, with the binomial coefficient 2mCσ we can write

(3.3) α(2m)
σ = (−1)−σ

2mCσ(−1)−σ
2mCσ

m− σ

2m

for σ = 0, 1, . . . , 2m. Here we remark that α
(2m)
σ = α

(2m)
2m−σ and that α

(2m−1)
σ =

−α(2m−1)
2m−σ which means α

(2m−1)
m = 0.

Similarly as §1.2, ϕ must satisfies the condition

F−1
[

∣

∣ξmϕ̂(2m)(ξ)
∣

∣

2
]

(ℓ− k) =































(−1)mα
(2m)
m if k = ℓ,

(−1)mα
(2m)
m−1 if k = ℓ± 1,

...

(−1)mα
(2m)
m−m if k = ℓ±m,

0 otherwise,

which is equivalent to

∑

q∈Z

∣

∣(ξ + 2qπ)mϕ̂(2m)(ξ + 2qπ)
∣

∣

2 ≡ (−1)m
2m
∑

σ=0

α(2m)
σ e(m−σ)iξ

(

= 4m sin2m
ξ

2

)



ON THE GALERKIN-WAVELET METHOD 977

for almost everywhere ξ ∈ R, here we used by (3.3)

(−1)m
2m
∑

σ=0

α(2m)
σ e(m−σ)iξ =

2m
∑

j=0

2mCj

{

− eiξ
}m−σ

= (−e−iξ)m(1− eiξ)2m = 4m sin2m
ξ

2
.

Hence, the identity (1.4) still holds for Φ(x). Thus, the definition (3.1) yields

(3.4) ϕ(2m)(x) = Nm ∗ Φ(x).
We remark that E(x) = Nm(x) satisfies (i) in Definition 1.1. As for (ii), we

get the following theorem:

Theorem 3.1. Let us put

a
(2m)
k,ℓ := (−1)m

〈(

d

dx

)m

ϕ
(2m)
0,k ,

(

d

dx

)m

ϕ
(2m)
0,ℓ

〉

L2

(

=

〈

(

d

dx

)2m

ϕ
(2m)
0,k , ϕ

(2m)
0,ℓ

〉

L2

)

and

a
(2m,r)
k,ℓ := (−1)[

r
2
]

〈

(

d

dx

)[ r+1

2
]

ϕ
(2m)
0,k ,

(

d

dx

)[ r
2
]

ϕ
(2m)
0,k

〉

L2

=

〈(

d

dx

)r

ϕ
(2m)
0,k , ϕ

(2m)
0,ℓ

〉

L2

for 0 ≤ r ≤ 2m− 1. Then, for ϕ(2m) defined by (3.4) we have

(3.5) a
(2m)
k,ℓ =



























(−1)m2mCm if k = ℓ,
(−1)m−1

2mCm−1 if k = ℓ± 1,
...

(−1)m−m
2mCm−m if k = ℓ±m,
0 otherwise.

Moreover, it holds that for v ∈ C2m+2
0

(3.6)
∑

ν∈Z

a
(2m,r)
k,k+ν v(x + νh) = hr

dr

dxr
v(x) +O(hr+2) (0 ≤ r ≤ 2m− 1),

(3.7)
m
∑

ν=−m

a
(2m)
k,k+νv(x + νh) = h2m

d2m

dx2m
v(x) +O(h2m+2).

Remark 3.2. For the discretization of the 2m-th order derivative we need the
information on at least (2m+1)-points. Therefore, the stiffness matrix {a(2m)

k,ℓ }
given by (3.5) is the most sparse (the band width is 2m+ 1).

Proof of Theorem 3.1. (3.5) can be obtained by (3.3). Noting that a
(2m)
k,k+ν =

α
(2m)
m−ν , from the construction we immediately get (3.7). It remains to prove

(3.6). By Parseval’s theorem we see that

a
(2m,r)
k,ℓ :=

〈

dr

dxr
ϕ
(2m)
0,k , ϕ

(2m)
0,ℓ

〉

L2

= F−1
[

(iξ)r
∣

∣ϕ̂(2m)(ξ)
∣

∣

2
]

(ℓ− k)
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=
1

2π

∫ 2π

0

ei(ℓ−k)ξ
∑

q∈Z

{i(ξ + 2qπ)}r
∣

∣ϕ̂(2m)(ξ + 2qπ)
∣

∣

2
dξ.

Hence, we find that
∑

q∈Z

{i(ξ + 2qπ)}r
∣

∣ϕ̂(2m)(ξ + 2qπ)
∣

∣

2
dξ =

∑

ν∈Z

a
(2m,r)
k,k+ν e

iνξ,

here we remark that a
(2m,r)
k,k+ν is constant for all k ∈ Z. Furthermore, we have

for 0 ≤ r ≤ 2m− 1

lim
ξ→0

1

(iξ)r

∑

ν∈Z

a
(2m,r)
k,k+ν e

iνξ = lim
ξ→0

∑

q∈Z

{i(ξ + 2qπ)}r
∣

∣ϕ̂(2m)(ξ + 2qπ)
∣

∣

2

(iξ)r

= lim
ξ→0

∑

q∈Z, q 6=0

{i(ξ + 2qπ)}r
∣

∣ sinm(ξ/2)Φ̂(ξ + 2qπ)
∣

∣

2

|(ξ + 2qπ)/2|2m(iξ)r
+ lim

ξ→0

∣

∣ sinm(ξ/2)Φ̂(ξ)
∣

∣

2

|ξ/2|2m

= lim
ξ→0

∑

q∈Z, q 6=0

{i(2qπ)}r
∣

∣ sinm ξΦ̂(2qπ)
∣

∣

2

|qπ|2m(iξ)r
+
∣

∣Φ̂(0)
∣

∣

2
= 1.

Replacing ξ by hξ and multiplying the both sides by (iξ)rû(ξ), we also get the
identity

lim
h→0

1

hr

∑

ν∈Z

a
(2m,r)
k,k+ν e

iνξû(ξ) = (iξ)rû(ξ).

By inverse Fourier transform it follows that

lim
h→0

∑

ν∈Z
a
(2m,r)
k,k+ν u(x+ νh)

hr
=

dr

dxr
u(x),

which means (3.6). �

4. Numerical results

Let us introduce some examples and numerical results in this section.

Riesz base Choice of Elevator Length of Regularity Remainder
ϕ Φ E support in x
N2 N1 N1 2 C1 (Lip) O(h2)
ϕD
2 ΦD

2 N1 4 C1.5 O(h2)

Ñ2 N1

γ+N1(x− 1)

+γ−N1(x) 3 C2 O(h4)

ϕ̃D
2 ΦD

2

γ+N1(x− 1)

+γ−N1(x) 5 C1.5 O(h4)
N3 N1 N2 3 C2 O(h2)
◦
ϕD
2 ΦD

2 N2 5 C2.5 O(h2)
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The boundary valued problem for

−ε2 d
2

dx2
u(ε) + u(ε) = f, 0 < x < 1, u(ε)(0) = u(ε)(1) = 0,

has a solution represented by

u(ε)(x)=− sinh(x/ε)

ε sinh(1/ε)

∫ 1

0

sinh
y − 1

ε
f(y)dy +

1

ε

∫ x

0

sinh
y − x

ε
f(y)dy.(4.1)

For f(x) = sin 10πx, by (4.1) the exact solution is u(ε)(x) = sin 10πx
1+100ε2π2 and the

errors with the Riesz bases N2 and ϕD
2 are given by the following:

(i) The case of ε = 1.

Mesh size 2−j EN2

j QN2 E
ϕD

2

j QϕD
2

j = 6 1.57×10-4 2.67 2.02×10-2 6.07
j = 7 5.67×10-5 2.77 3.58×10-3 5.64
j = 8 2.02×10-5 2.81 8.47×10-4 4.23

(ii) The case of ε = 10−6.

Mesh size 2−j EN2

j QN2 E
ϕD

2

j QϕD
2

j = 6 1.58×10-1 2.82 6.21×10-4 5.57
j = 7 5.62×10-2 2.81 1.17×10-4 5.32
j = 8 2.00×10-2 2.82 6.21×10-4 5.57

For f(x) = −ε2(9N1(3x)−18N1(3x−1)+N1(3x−2))+N3(3x), the exact solu-

tion u(x) = N3(3x) belongs to H
2, since

∫

R
〈ξ〉4|û(ξ)|2dξ =

∫

R
〈ξ〉4

(

sin ξ/6
ξ/6

)6

dξ

<∞. The errors are given by the following:
(iii) The case of ε = 1.

Mesh size 2−j EN2

j QN2 E
ϕD

2

j QϕD
2

j = 6 1.43×10-4 2.81 6.08×10-4 4.00
j = 7 5.20×10-5 2.75 1.52×10-4 4.00
j = 8 1.84×10-5 2.82 3.82×10-5 3.98

(iv) The case of ε = 10−6.

Mesh size 2−j EN2

j QN2 E
ϕD

2

j QϕD
2

j = 6 4.68×10-3 2.79 5.59×10-4 4.00
j = 7 1.69×10-3 2.77 1.40×10-4 3.99
j = 8 6.00×10-4 2.82 3.51×10-5 3.99

Here Eϕ
j is relative L2-error between the exact solution u(ε)(x) and the approx-

imation ũ(ε)(x) =
∑N

ℓ=1 uℓϕj,ℓ(x) on [0, 1] defined by

Eϕ
j = Eϕ

j (ε) =
1

‖u(ε)‖L2

√

√

√

√

2j
∑

ℓ=0

{

u(ε)
(

ℓ

2j

)

− ũ(ε)
(

ℓ

2j

)}2

and the ratio Qϕ is defined by Qϕ = Eϕ
j−1/E

ϕ
j .
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Now, we also consider the beam equation (4th order differential equation)

d4

dx4
u+ u = f, 0 < x < 1, u(0) = u(1) = u′(0) = u′(1) = 0,

and its bilinear form
〈

d2

dx2
u,

d2

dx2
ϕ

〉

L2

+ 〈u, ϕ〉L2 = 〈f, ϕ〉L2 .

To derive the approximate solution we solve the following equation:
[

{

ak,ℓh
−3

}

1≤k,ℓ≤N
+ {ck,ℓh}1≤k,ℓ≤N

]

t{uℓ}1≤ℓ≤N = t {〈f, ϕj,ℓ〉L2}1≤ℓ≤N ,

where ck,ℓ = 〈ϕ0,k, ϕ0,ℓ〉. If ϕ satisfies (3.1), from (3.5) it holds that

(4.2) ak,ℓ =















6 if k = ℓ,
−4 if k = ℓ± 1,
1 if k = ℓ± 2,
0 otherwise.

For N3 = N2 ∗N1 and
◦
ϕD
2 = N2 ∗ ΦD

2 , we get the following numerical results:
(v) The case of f(x) = sin 10πx and

u(x) =
10

√
2π

(

e
1√
2

(

1−e
√
2x
)

sinx−1√
2
−
(

e
√
2−e

√
2x
)

sin x√
2

)

+e
x√
2

(

e
√
2−1−2e

1√
2 sin 1√

2

)

sin 10πx

(1 + 10000π4) e
x√
2

(

e
√
2 − 1− 2e

1√
2 sin 1√

2

) .

Mesh size 2−j EN3

j QN3 E
◦
ϕD

2

j Q̃
◦
ϕD

2

j = 6 5.02×10−2 2.86 2.44 3.03
j = 7 1.77×10−2 2.84 3.11 ×10−1 7.86
j = 8 6.25×10−3 2.83 3.39 ×10−1 0.918

(vi) The case of f(x) = x and

u(x) =
{((

e
2x+3√

2 + e
1√
2

)(√
2e

√
2 −

√
2 + 1

)

− 2e
1√
2

)

sin
x− 1√

2

− e
1√
2

(

e
√
2x(e

√
2 − 2−

√
2)− e

√
2(2−

√
2) + 1

)

cos
x− 1√

2

+
√
2(e

√
2 − 1)(e

√
2x − e

√
2) sin

x√
2
+
(

e
3√
2 − e

2x+1√
2

)

sin
x+ 1√

2

+
√
2e

√
2
(

e
√
2x − 1

)

(

cos
x√
2
− cos

x− 2√
2

)

+
((√

2− 1
)

e
3√
2 −

(

1 +
√
2
)

e
2x+1√

2

)

cos
x+ 1√

2

}

×
{

2e
x+2√

2

(

−2 + cos
√
2 + cosh

√
2
)}−1

+ x.
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Mesh size 2−j EN3

j QN3 E
◦
ϕD

2

j Q̃
◦
ϕD

2

j = 6 9.02×10−3 2.83 1.33 1.33
j = 7 3.19×10−3 2.83 9.71 ×10−1 1.37
j = 8 1.13×10−3 2.83 6.97×10−1 1.39

(vii) The case of f(x) = N5(5x) + 625N1(5x)− 2500N1(5x− 1)+3750N1(5x−
2)− 2500N1(5x− 3) + 625N1(5x− 4) and u(x) = N5(5x) ∈ H4.

Mesh size 2−j EN3

j QN3 E
◦
ϕD

2

j Q̃
◦
ϕD

2

j = 6 7.81×10−3 2.83 1.14×10−4 5.18
j = 7 2.76×10−3 2.83 1.14×10−4 5.18
j = 8 9.75×10−4 2.83 2.20×10−4 5.17

(viii) The case of f(x) = N4(4x)−256δ(x−1/4)+384δ(x−1/2)−256δ(x−3/4)
and u(x) = N4(4x) ∈ Hs for s < 3.5(< 4).

Mesh size 2−j EN3

j QN3 E
◦
ϕD

2

j Q̃
◦
ϕD

2

j = 6 6.15×10−3 2.85 5.98×10−2 2.87
j = 7 2.17×10−3 2.83 2.10×10−2 2.85
j = 8 7.67×10−4 2.83 7.41×10−3 2.83

Concluding remarks

The method with the elevated Riesz bases converts a continuous operator
to a discrete problem by featuring the highest order derivatives. Therefore, we
can consider the following advantages:

(1) For −ε2 d2

dx2u
(ε) + u(ε) = f , if ε > 0 is smaller, −ε2 d2

dx2 gives more
perturbation to the solution. The influence of the parameter ε > 0 can be

reduced to some extent. Actually, for ϕD
2 the relative L2-error E

ϕD
2

j is stable

for a smaller ε > 0 (see E
ϕD

2

j in (i), (ii), (iii), (iv)).

(2) For (−1)m d2m

dx2mu+u = f , if the solution has lower regularity, (−1)m d2m

dx2m

plays a more role in the structure of the equation. When we consider the
solution in H2m or of less regularity in Hs (s < 2m), for instance m = 2, the

relative L2-errors EN3

j and E
◦
ϕD

2

j keep good results even in comparison with

m = 1 (see (iii), (vii), (viii)).
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