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SEMI-SLANT SUBMERSIONS

Kwang-Soon Park and Rajendra Prasad

Abstract. We introduce semi-slant submersions from almost Hermitian
manifolds onto Riemannian manifolds as a generalization of slant submer-
sions, semi-invariant submersions, anti-invariant submersions, etc. We
obtain characterizations, investigate the integrability of distributions and
the geometry of foliations, etc. We also find a condition for such submer-
sions to be harmonic. Moreover, we give lots of examples.

1. Introduction

Let F be a C∞-submersion from a semi-Riemannian manifold (M, gM ) onto
a semi-Riemannian manifold (N, gN ). Then according to the conditions on the
map F : (M, gM ) 7→ (N, gN ), we have the following submersions:

Semi-Riemannian submersion and Lorentzian submersion [7], Riemannian
submersion ([8], [14]), slant submersion ([5], [17]), almost Hermitian submer-
sion [20], contact-complex submersion [9], quaternionic submersion [10], almost
h-slant submersion and h-slant submersion [15], anti-invariant submersion [19],
semi-invariant submersion [18], h-semi-invariant submersion [16], etc. As we
know, Riemannian submersions are related with physics and have their ap-
plications in the Yang-Mills theory ([3], [21]), Kaluza-Klein theory ([2], [11]),
Supergravity and superstring theories ([12], [13]), etc. Let (M, gM ) and (N, gN )
be Riemannian manifolds and F : M 7→ N a C∞-submersion. The map F is
said to be Riemannian submersion if the differential F∗ preserves the lengths of
horizontal vectors [10]. Let (M, gM , J) and (M1, gM1

, J1) be almost Hermitian
manifolds. A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called a
slant submersion if the angle θ(X) between JX and the space ker(F∗)p is con-
stant for any nonzero X ∈ TpM and p ∈ M [17]. We call θ(X) a slant angle. A
Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called an anti-invariant

submersion if JX ∈ Γ((kerF∗)
⊥) for X ∈ Γ(kerF∗) [19]. A Riemannian sub-

mersion F : (M, gM , J) 7→ (M1, gM1
, J1) is called an almost Hermitian submer-

sion if F is an almost complex map, i.e., F∗ ◦ J = J1 ◦ F∗ [20]. A Riemannian
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submersion F : (M, gM , J) 7→ (N, gN ) is called a semi-invariant submersion if
there is a distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ (kerF∗)
⊥,

where D2 is the orthogonal complement of D1 in kerF∗ [17]. Let (M, gM ) and
(N, gN ) be Riemannian manifolds and F : (M, gM ) 7→ (N, gN ) a smooth map.
The second fundamental form of F is given by

(∇F∗)(X,Y ) := ∇F
XF∗Y − F∗(∇XY ) for X,Y ∈ Γ(TM),

where ∇F is the pullback connection and we denote conveniently by ∇ the
Levi-Civita connections of the metrics gM and gN [4]. Recall that F is said
to be harmonic if trace(∇F∗) = 0 and F is called a totally geodesic map if
(∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(TM) [4]. The paper is organized as follows. In
Section 2 we give the definition of the semi-slant submersion and obtain some
interesting properties on them. In Section 3 we construct some examples for
the semi-slant submersion.

2. Semi-slant submersions

Definition 2.1. Let (M, gM , J) be an almost Hermitian manifold and (N, gN )
a Riemannian manifold. A Riemannian submersion F : (M, gM , J) 7→ (N, gN )
is called a semi-slant submersion if there is a distribution D1 ⊂ kerF∗ such
that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗.

We call the angle θ a semi-slant angle.

Remark 2.2. As we know, a semi-slant submersion is the generalized version of
a slant submersion. There are some similarities and differences between them.
For the condition for such submersions to be harmonic, a semi-slant submersion
has much more nice form than a slant submersion. But for the one for such
submersions to be totally geodesic, two cases have the same condition. With
the tensor ω to be parallel, we obtain some results on the slant submersions. For
the semi-slant submersions with totally umbilical fibers, we have some results
for the mean curvature vector field.

Let F : (M, gM , J) 7→ (N, gN) be a semi-slant submersion. Then there is a
distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗.

Then for X ∈ Γ(kerF∗), we have

X = PX +QX,
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where PX ∈ Γ(D1) and QX ∈ Γ(D2).
For X ∈ Γ(kerF∗), we get

JX = φX + ωX,

where φX ∈ Γ(kerF∗) and ωX ∈ Γ((kerF∗)
⊥).

For Z ∈ Γ((kerF∗)
⊥), we obtain

JZ = BZ + CZ,

where BZ ∈ Γ(kerF∗) and CZ ∈ Γ((kerF∗)
⊥).

For U ∈ Γ(TM), we have

U = VU +HU,

where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)
⊥).

Then
(kerF∗)

⊥ = ωD2 ⊕ µ,

where µ is the orthogonal complement of ωD2 in (kerF∗)
⊥ and is invariant

under J . Furthermore,

φD1 = D1, ωD1 = 0, φD2 ⊂ D2, B((kerF∗)
⊥) = D2

φ2 +Bω = −id, C2 + ωB = −id, ωφ+ Cω = 0, BC + φB = 0.

Define the tensors T and A by

AEF = H∇HEVF + V∇HEHF, TEF = H∇VEVF + V∇VEHF

for vector fields E,F on M , where ∇ is the Levi-Civita connection of gM .
Define

(∇Xφ)Y := ∇̂XφY − φ∇̂XY

and
(∇Xω)Y := H∇XωY − ω∇̂XY

for X,Y ∈ Γ(kerF∗), where ∇̂XY := V∇XY . Then we easily have:

Lemma 2.3. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian

manifold. Let F : (M, gM , J) 7→ (N, gN ) be a semi-slant submersion. Then we

get

∇̂XφY + TXωY = φ∇̂XY +BTXY,(a)

TXφY +H∇XωY = ω∇̂XY + CTXY

for X,Y ∈ Γ(kerF∗).

V∇ZBW +AZCW = φAZW + BH∇ZW,(b)

AZBW +H∇ZCW = ωAZW + CH∇ZW

for Z,W ∈ Γ((kerF∗)
⊥).

∇̂XBZ + TXCZ = φTXZ +BH∇XZ,(c)

TXBZ +H∇XCZ = ωTXZ + CH∇XZ
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for X ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥).

Theorem 2.4. Let F be a semi-slant submersion from an almost Hermitian

manifold (M, gM , J) onto a Riemannian manifold (N, gN). Then the complex

distribution D1 is integrable if and only if we have

ω(∇̂XY − ∇̂Y X) = C(TY X − TXY ) for X,Y ∈ Γ(D1).

Proof. For X,Y ∈ Γ(D1) and Z ∈ Γ((kerF∗)
⊥), since [X,Y ] ∈ Γ(kerF∗), we

obtain

gM (J [X,Y ], Z) = gM (J(∇XY −∇Y X), Z)

= gM (φ∇̂XY + ω∇̂XY +BTXY + CTXY − φ∇̂Y X − ω∇̂Y X

−BTY X − CTY X,Z)

= gM (ω∇̂XY + CTXY − ω∇̂Y X − CTY X,Z).

Therefore, we have the result. �

Similarly, we get:

Theorem 2.5. Let F be a semi-slant submersion from an almost Hermitian

manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then the slant

distribution D2 is integrable if and only if we obtain

P (φ(∇̂XY − ∇̂Y X) +B(TXY − TY X)) = 0 for X,Y ∈ Γ(D2).

Lemma 2.6. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian

manifold. Let F : (M, gM , J) 7→ (N, gN ) be a semi-slant submersion. Then the

slant distribution D2 is integrable if and only if we obtain

P (∇̂XφY − ∇̂Y φX + TXωY − TY ωX) = 0 for X,Y ∈ Γ(D2).

Proof. For X,Y ∈ Γ(D2) and Z ∈ Γ(D1), since [X,Y ] ∈ Γ(kerF∗), we have

gM (J [X,Y ], Z) = gM (∇XJY −∇Y JX,Z)

= gM (∇̂XφY + TXφY + TXωY +H∇XωY − ∇̂Y φX − TY φX
− TY ωX −H∇Y ωX,Z)

= gM (∇̂XφY + TXωY − ∇̂Y φX − TY ωX,Z).

Therefore, the result follows. �

In a similar way, we have:

Lemma 2.7. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian

manifold. Let F : (M, gM , J) 7→ (N, gN ) be a semi-slant submersion. Then the

complex distribution D1 is integrable if and only if we get

Q(∇̂XφY − ∇̂Y φX) = 0 and TXφY = TY φX for X,Y ∈ Γ(D1).
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Define an endomorphism F̂ of kerF∗ by

F̂ := JP + φQ,

where (∇X F̂ )Y := ∇̂X F̂Y − F̂ ∇̂XY for X,Y ∈ Γ(kerF∗). Then it is not
difficult to get.

Lemma 2.8. Let F be a semi-slant submersion from a Kähler manifold (M ,

gM , J) onto a Riemannian manifold (N, gN ). Then we have

(∇X F̂ )Y = φ(∇̂XPY − ∇̂XY ) +BTXPY + ∇̂XφQY for X,Y ∈ Γ(kerF∗).

Proposition 2.9. Let F be a semi-slant submersion from an almost Hermitian

manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then we obtain

φ2X = − cos2 θX for X ∈ Γ(D2),

where θ denotes the semi-slant angle of D2.

Proof. Since

cos θ =
gM (JX, φX)

|JX | · |φX | =
−gM (X,φ2X)

|X | · |φX | and cos θ =
|φX |
|JX | ,

we have

cos2 θ = −gM(X,φ2X)

|X |2 for X ∈ Γ(D2).

Hence,
φ2X = − cos2 θX for X ∈ Γ(D2). �

Remark 2.10. In particular, we easily see that the converse of Proposition 2.9
is also true.

Assume that the semi-slant angle θ is not equal to π
2
and define an endo-

morphism Ĵ of kerF∗ by

Ĵ := JP +
1

cos θ
φQ.

Then,

Ĵ2 = −id on kerF∗.(1)

Remark 2.11. Let F be a semi-slant submersion from an almost Hermitian man-
ifold (M, gM , J) onto a Riemannian manifold (N, gN ). Assume that dimM =
2m, dimN = n, and θ ∈ [0, π

2
). From (1), we have

dim(ker(F∗)p) = 2k and dim((ker(F∗)p)
⊥) = 2m− 2k for p ∈ M,

where k is a non-negative integer.
Therefore, n must be even.

Theorem 2.12. Let F be a semi-slant submersion from an almost Hermitian

manifold (M, gM , J) onto a Riemannian manifold (N, gN ) with the semi-slant

angle θ ∈ [0, π
2
). Then N is an even-dimensional manifold.
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Proposition 2.13. Let F be a semi-slant submersion from a Kähler manifold

(M, gM , J) onto a Riemannian manifold (N, gN ). Then the distribution kerF∗

defines a totally geodesic foliation if and only if

ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0 for X,Y ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ(kerF∗),

∇XY = −J∇XJY

= −J(∇̂XφY + TXφY + TXωY +H∇XωY )

= −(φ∇̂XφY + ω∇̂XφY +BTXφY + CTXφY + φTXωY + ωTXωY

+BH∇XωY + CH∇XωY ).

Thus,

∇XY ∈ Γ(kerF∗) ⇔ ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0. �

Similarly, we have:

Proposition 2.14. Let F be a semi-slant submersion from a Kähler mani-

fold (M, gM , J) onto a Riemannian manifold (N, gN ). Then the distribution

(kerF∗)
⊥ defines a totally geodesic foliation if and only if

φ(V∇XBY +AXCY ) +B(AXBY +H∇XCY ) = 0 for X,Y ∈ Γ((kerF∗)
⊥).

Proposition 2.15. Let F be a semi-slant submersion from a Kähler manifold

(M, gM , J) onto a Riemannian manifold (N, gN ). Then the distribution D1

defines a totally geodesic foliation if and only if

Q(φ∇̂XφY +BTXφY ) = 0 and ω∇̂XφY + CTXφY = 0

for X,Y ∈ Γ(D1).

Proof. For X,Y ∈ Γ(D1), we get

∇XY = −J∇XJY

= −J(∇̂XφY + TXφY )

= −(φ∇̂XφY + ω∇̂XφY +BTXφY + CTXφY ).

Hence,

∇XY ∈ Γ(D1) ⇔ Q(φ∇̂XφY +BTXφY ) = 0 and ω∇̂XφY + CTXφY = 0.�

In a similar way, we obtain:

Proposition 2.16. Let F be a semi-slant submersion from a Kähler manifold

(M, gM , J) onto a Riemannian manifold (N, gN ). Then the distribution D2

defines a totally geodesic foliation if and only if

P (φ(∇̂XφY + TXωY ) +B(TXφY +H∇XωY )) = 0,

ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0
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for X,Y ∈ Γ(D2).

Theorem 2.17. Let F be a semi-slant submersion from a Kähler manifold

(M, gM , J) onto a Riemannian manifold (N, gN ). Then F is a totally geodesic

map if and only if

ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0,

ω(∇̂XBZ + TXCZ) + C(TXBZ +H∇XCZ) = 0

for X,Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥).

Proof. Since F is a Riemannian submersion, we have

(∇F∗)(Z1, Z2) = 0 for Z1, Z2 ∈ Γ((kerF∗)
⊥).

For X,Y ∈ Γ(kerF∗), we obtain

(∇F∗)(X,Y ) = − F∗(∇XY )

= F∗(J∇X(φY + ωY ))

= F∗(φ∇̂XφY + ω∇̂XφY +BTXφY + CTXφY + φTXωY

+ ωTXωY +BH∇XωY + CH∇XωY ).

Thus,

(∇F∗)(X,Y ) = 0 ⇔ ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0.

For X ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥), we get

(∇F∗)(X,Z) = − F∗(∇XZ)

= F∗(J∇X(BZ + CZ))

= F∗(φ∇̂XBZ + ω∇̂XBZ +BTXBZ + CTXBZ + φTXCZ

+ ωTXCZ +BH∇XCZ + CH∇XCZ).

Hence,

(∇F∗)(X,Z) = 0 ⇔ ω(∇̂XBZ + TXCZ) + C(TXBZ +H∇XCZ) = 0.

Since (∇F∗)(X,Z) = (∇F∗)(Z,X), we get the result. �

Let F be a semi-slant submersion from a Kähler manifold (M, gM , J) onto a
Riemannian manifold (N, gN ). Assume that D1 is integrable. Choose a local or-
thonormal frame {v1, . . . , vl} of D2 and a local orthonormal frame {e1, . . . , e2k}
of D1 such that e2i = Je2i−1 for 1 ≤ i ≤ k. Since

F∗(∇Je2i−1
Je2i−1) = −F∗(∇e2i−1

e2i−1)

for 1 ≤ i ≤ k, we have

trace(∇F∗) = 0 ⇔
l∑

j=1

F∗(∇vjvj) = 0.
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Theorem 2.18. Let F be a semi-slant submersion from a Kähler manifold

(M, gM , J) onto a Riemannian manifold (N, gN ) such that D1 is integrable.

Then F is a harmonic map if and only if

trace(∇F∗) = 0 on D2.

Let F : (M, gM ) 7→ (N, gN ) be a Riemannian submersion. The map F is
called a Riemannian submersion with totally umbilical fibers if

TXY = gM (X,Y )H for X,Y ∈ Γ(kerF∗),(2)

where H is the mean curvature vector field of the fiber.
In a similar way with Lemma 4.2 of [18], we obtain:

Lemma 2.19. Let F be a semi-slant submersion with totally umbilical fibers

from a Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN). Then
we have

H ∈ Γ(ωD2).

Proof. For X,Y ∈ Γ(D1) and W ∈ Γ(µ), we get

TXJY + ∇̂XJY = ∇XJY = J∇XY = BTXY + CTXY + φ∇̂XY + ω∇̂XY

so that

gM (TXJY,W ) = gM (CTXY,W ).

By (2), with a simple calculation we obtain

gM (X, JY )gM (H,W ) = −gM (X,Y )gM (H, JW ).

Interchanging the role of X and Y , we get

gM (Y, JX)gM (H,W ) = −gM (Y,X)gM (H, JW )

so that combining the above two equations, we have

gM (X,Y )gM (H, JW ) = 0

which means H ∈ Γ(ωD2), since Jµ = µ. Therefore, we obtain the result. �

Remark 2.20. Let F be a semi-slant submersion from a Kähler manifold (M ,
gM , J) onto a Riemannian manifold (N, gN ). Then there is a distribution
D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗.
Furthermore,

φD2 ⊂ D2, ωD2 ⊂ (kerF∗)
⊥, (kerF∗)

⊥ = ωD2 ⊕ µ,

where µ is the orthogonal complement of ωD2 in (kerF∗)
⊥ and is invariant

under J . As we know, the holomorphic sectional curvatures determine the
Riemannian curvature tensor in a Kähler manifold.
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Given a plane P being invariant by J in TpM , p ∈ M , there is an orthonor-

mal basis {X, JX} of P . Denote by K(P ), K∗(P ), and K̂(P ) the sectional
curvatures of the plane P in M , N , and the fiber F−1(F (p)), respectively,
where K∗(P ) denotes the sectional curvature of the plane P∗ = 〈F∗X,F∗JX〉
in N . Let K(X ∧ Y ) be the sectional curvature of the plane spanned by the
tangent vectors X,Y ∈ TpM , p ∈ M . Using both Corollary 1 of [14, p. 465]
and (1.27) of [7, p. 12], we obtain the following:

(1) If P ⊂ (D1)p, then with some computations we have

K(P ) = K̂(P ) + |TXX |2 − |TXJX |2 − gM (TXX, J [JX,X ]).

(2) If P ⊂ (D2 ⊕ ωD2)p with X ∈ (D2)p, then we get

K(P ) = cos2 θ ·K(X ∧ φX) + 2gM ((∇φXT )(X,X)

− (∇XT )(φX,X), ωX) + sin2 θ ·K(X ∧ ωX).

(3) If P ⊂ (µ)p, then we obtain

K(P ) = K∗(P )− 3|VJ∇XX |2.

3. Examples

Example 3.1. Let F be a slant submersion from an almost Hermitian manifold
(M, gM , J) onto a Riemannian manifold (N, gN ) [17]. Then the map F is a
semi-slant submersion with D2 = kerF∗.

Example 3.2. Let F be a semi-invariant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ) [18]. Then the map
F is a semi-slant submersion with the semi-slant angle θ = π

2
.

Example 3.3. Let F be an almost h-slant submersion from a hyperkähler man-
ifold (M, gM , I, J,K) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is an almost h-slant basis [15]. Then the map F : (M, gM , R) 7→ (N, gN ) is a
semi-slant submersion with D2 = kerF∗ for R ∈ {I, J,K}.
Example 3.4. Let F be an almost h-semi-invariant submersion from a hy-
perkähler manifold (M, gM , I, J,K) onto a Riemannian manifold (N, gN ) such
that (I, J,K) is an almost h-semi-invariant basis [16]. Then the map F :
(M, gM , R) 7→ (N, gN ) is a semi-slant submersion with the semi-slant angle
θ = π

2
for R ∈ {I, J,K}.

Example 3.5. Define a map F : R6 7→ R
2 by

F (x1, x2, . . . , x6) = (x3 sinα− x5 cosα, x6),

where α ∈ (0, π
2
). Then the map F is a semi-slant submersion such that

D1 =

〈
∂

∂x1

,
∂

∂x2

〉
and D2 =

〈
∂

∂x4

, cosα
∂

∂x3

+ sinα
∂

∂x5

〉

with the semi-slant angle θ = α.
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Example 3.6. Define a map F : R8 7→ R
2 by

F (x1, x2, . . . , x8) =

(
x5 − x8√

2
, x6

)
.

Then the map F is a semi-slant submersion such that

D1 =

〈
∂

∂x1

,
∂

∂x2

,
∂

∂x3

,
∂

∂x4

〉
and D2 =

〈
∂

∂x7

,
∂

∂x5

+
∂

∂x8

〉

with the semi-slant angle θ = π
4
.

Example 3.7. Define a map F : R10 7→ R
5 by

F (x1, x2, . . . , x10) =

(
x2, x1,

x5 + x6√
2

,
x7 + x9√

2
,
x8 + x10√

2

)
.

Then the map F is a semi-slant submersion such that

D1 =

〈
∂

∂x3

,
∂

∂x4

,− ∂

∂x7

+
∂

∂x9

,− ∂

∂x8

+
∂

∂x10

〉
and D2 =

〈
− ∂

∂x5

+
∂

∂x6

〉

with the semi-slant angle θ = π
2
.

Example 3.8. Define a map F : R10 7→ R
4 by

F (x1, x2, . . . , x10) =

(
x3 − x5√

2
, x6,

x7 − x9√
2

, x8

)
.

Then the map F is a semi-slant submersion such that

D1 =

〈
∂

∂x1

,
∂

∂x2

〉
and D2 =

〈
∂

∂x3

+
∂

∂x5

,
∂

∂x7

+
∂

∂x9

,
∂

∂x4

,
∂

∂x10

〉

with the semi-slant angle θ = π
4
.

Example 3.9. Define a map F : R8 7→ R
4 by

F (x1, x2, . . . , x8) = (x1, x2, x3 cosα− x5 sinα, x4 sinβ − x6 cosβ) ,

where α and β are constant. Then the map F is a semi-slant submersion such
that

D1 =

〈
∂

∂x7

,
∂

∂x8

〉
and D2 =

〈
sinα

∂

∂x3

+ cosα
∂

∂x5

, cosβ
∂

∂x4

+ sinβ
∂

∂x6

〉

with the semi-slant angle θ with cos θ = | sin(α+ β)|.
Example 3.10. Let G be a slant submersion from an almost Hermitian man-
ifold (M1, gM1

, J1) onto a Riemannian manifold (N, gN ) with the slant angle
θ and (M2, gM2

, J2) an almost Hermitian manifold. Denote by (M, g, J) the
warped product of (M1, gM1

, J1) and (M2, gM2
, J2) by a positive function f on

M1 [7], where J = J1 × J2. Define a map F : (M, g, J) 7→ (N, gN) by

F (x, y) = G(x) for x ∈ M1 and y ∈ M2.

Then the map F is a semi-slant submersion such that

D1 = TM2 and D2 = kerG∗
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with the semi-slant angle θ.
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