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SEMI-SLANT SUBMERSIONS

KWANG-SOON PARK AND RAJENDRA PRASAD

ABSTRACT. We introduce semi-slant submersions from almost Hermitian
manifolds onto Riemannian manifolds as a generalization of slant submer-
sions, semi-invariant submersions, anti-invariant submersions, etc. We
obtain characterizations, investigate the integrability of distributions and
the geometry of foliations, etc. We also find a condition for such submer-
sions to be harmonic. Moreover, we give lots of examples.

1. Introduction

Let F be a C*°-submersion from a semi-Riemannian manifold (M, gas) onto
a semi-Riemannian manifold (IV, gn). Then according to the conditions on the
map F : (M, gn) — (N, gn), we have the following submersions:

Semi-Riemannian submersion and Lorentzian submersion [7], Riemannian
submersion ([8], [14]), slant submersion ([5], [17]), almost Hermitian submer-
sion [20], contact-complex submersion [9], quaternionic submersion [10], almost
h-slant submersion and h-slant submersion [15], anti-invariant submersion [19],
semi-invariant submersion [18], h-semi-invariant submersion [16], etc. As we
know, Riemannian submersions are related with physics and have their ap-
plications in the Yang-Mills theory ([3], [21]), Kaluza-Klein theory ([2], [11]),
Supergravity and superstring theories ([12], [13]), etc. Let (M, gar) and (N, gn)
be Riemannian manifolds and F' : M +— N a C°°-submersion. The map F' is
said to be Riemannian submersion if the differential F preserves the lengths of
horizontal vectors [10]. Let (M, gar, J) and (M, gar,, J1) be almost Hermitian
manifolds. A Riemannian submersion F : (M, gn, J) — (N, gn) is called a
slant submersion if the angle §(X) between JX and the space ker(Fl), is con-
stant for any nonzero X € T,M and p € M [17]. We call 8(X) a slant angle. A
Riemannian submersion F' : (M, g, J) — (N, gn) is called an anti-invariant
submersion if JX € T'((ker F,)*) for X € I'(ker F,) [19]. A Riemannian sub-
mersion F : (M, gar, J) — (M1, g, , J1) is called an almost Hermitian submer-
sion if F is an almost complex map, i.e., F, o J = J; o F, [20]. A Riemannian
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submersion F : (M, g, J) — (N, gn) is called a semi-invariant submersion if
there is a distribution D; C ker F, such that

ker F, = Dy ® Dy, J(D1) =Dy, J(Dy) C (ker F,)*,

where D is the orthogonal complement of Dy in ker F, [17]. Let (M, gar) and
(N, gn) be Riemannian manifolds and F' : (M, gar) — (N, gn) a smooth map.
The second fundamental form of F' is given by

(VE)(X,Y):=VEFRY — F.(VxY) for X,Y € I(TM),

where V¥ is the pullback connection and we denote conveniently by V the
Levi-Civita connections of the metrics gy and gy [4]. Recall that F is said
to be harmonic if trace(VF.) = 0 and F is called a totally geodesic map if
(VF)(X,Y)=0for X,Y € T(T'M) [4]. The paper is organized as follows. In
Section 2 we give the definition of the semi-slant submersion and obtain some
interesting properties on them. In Section 3 we construct some examples for
the semi-slant submersion.

2. Semi-slant submersions

Definition 2.1. Let (M, gar, J) be an almost Hermitian manifold and (N, gn)
a Riemannian manifold. A Riemannian submersion F' : (M, gar, J) — (N, gn)
is called a semi-slant submersion if there is a distribution D; C ker F, such
that

kerF* = Dl EBDQ, J(Dl) = Dl,
and the angle 6 = 0(X) between JX and the space (Ds), is constant for nonzero
X € (D2)q and g € M, where Dj is the orthogonal complement of D; in ker F.

We call the angle 6 a semi-slant angle.

Remark 2.2. As we know, a semi-slant submersion is the generalized version of
a slant submersion. There are some similarities and differences between them.
For the condition for such submersions to be harmonic, a semi-slant submersion
has much more nice form than a slant submersion. But for the one for such
submersions to be totally geodesic, two cases have the same condition. With
the tensor w to be parallel, we obtain some results on the slant submersions. For
the semi-slant submersions with totally umbilical fibers, we have some results
for the mean curvature vector field.

Let F: (M, g, J) — (N, gn) be a semi-slant submersion. Then there is a
distribution D; C ker F, such that

ker F, =Dy @ Dy, J(D1) = Dy,

and the angle 8 = 6(X) between JX and the space (D2)q is constant for nonzero
X € (Dg)q and g € M, where D, is the orthogonal complement of Dy in ker F.
Then for X € I'(ker F,), we have

X = PX + QX,
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where PX € I'(D;) and QX € I'(Ds).
For X € I'(ker F), we get

JX = ¢X + wX,

where ¢X € I'(ker F},) and wX € T'((ker F,)™1).
For Z € T'((ker F.)1), we obtain

JZ =BZ+CZ,

where BZ € T'(ker F,) and CZ € T'((ker F},)1).
For U € T'(T M), we have

U=VU +HU,

where VU € T'(ker F,) and HU € I'((ker F,)71).
Then
(ker F,)* = wDy @ p,
where p is the orthogonal complement of wDs in (ker F,)* and is invariant
under J. Furthermore,

¢D1 = Dy, wD; =0, ¢Dy C Do, B((ker F,)*) =D,
¢*> + Bw = —id, C* + wB = —id, w¢+ Cw =0, BC + ¢B = 0.
Define the tensors 7 and A by
ApF = HVygVF + VVypHE, TgF = HVygVF + VVypHF

for vector fields E,F on M, where V is the Levi-Civita connection of ga;.
Define

(Vx9)Y :=VxoY — ¢VxY
and R
(wa)Y = HVXWY — vaY
for X, Y € I'(ker F), where VxY :=VVyY. Then we easily have:

Lemma 2.3. Let (M, g, J) be a Kahler manifold and (N, gn) a Riemannian
manifold. Let F : (M, g, J) — (N,gn) be a semi-slant submersion. Then we
get

(a) VxoY + TxwY = ¢VxY + BTxY,
Tx oY + HV xwY = w%XY + CTxY
for XY € T'(ker Fy).
(b) VVzBW + Az;CW = Az W + BHV zW,
Az BW +HV zCW = wA;W + CHV ;W

for Z,W € T'((ker F,)1).

(c) VxBZ+TxCZ = ¢TxZ + BHV x Z,
TxBZ +HVxCZ =wTxZ +CHV xZ
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for X € T'(ker F,) and Z € T'((ker F,)*).

Theorem 2.4. Let F' be a semi-slant submersion from an almost Hermitian
manifold (M, gy, J) onto a Riemannian manifold (N, gn). Then the complex
distribution Dy is integrable if and only if we have

wVxY =VyX)=C(Ty X — TxY) for X,Y € I(Dy).

Proof. For X,Y € T'(D;) and Z € T'((ker F.)1), since [X,Y] € T'(ker F..), we
obtain

gu(J[X,Y], Z) = gu(J(VxY — Vy X), Z)
= g (VXY +wVxY + BTxY + CTxY — ¢Vy X —wVyX
- BTy X -CTyX,Z)
= gM(Lu@XY + CTxY — wﬁyX -CTlyvX, 7).
Therefore, we have the result. (I
Similarly, we get:

Theorem 2.5. Let F' be a semi-slant submersion from an almost Hermitian
manifold (M, ga,J) onto a Riemannian manifold (N,gn). Then the slant
distribution Ds is integrable if and only if we obtain

P(@(VxY —VyX)+B(TxY =Ty X)) =0 for X,Y € I[(Dy).

Lemma 2.6. Let (M, g, J) be a Kéahler manifold and (N, gn) a Riemannian
manifold. Let F : (M, g, J) — (N, gn) be a semi-slant submersion. Then the
slant distribution D is integrable if and only if we obtain

P(VxoY — VydX + TxwY — TywX) =0 for X,Y € I(Ds).
Proof. For X,Y € I'(D;) and Z € I'(Dy), since [X,Y] € I'(ker F), we have
gu(JIX,Y], Z) = gu(VxJY = VyJX, Z)

= g (VXY + Tx oY + TxwY + HV xwY — VydX — Ty o X
— TywX — HVywX, Z)

= gu (VxoY + TxwY — VyoX — TywX, Z).
Therefore, the result follows. O

In a similar way, we have:

Lemma 2.7. Let (M, g, J) be a Kéahler manifold and (N, gn) a Riemannian
manifold. Let F : (M, gn,J) — (N, gn) be a semi-slant submersion. Then the
complex distribution Dy is integrable if and only if we get

Q(Vx¢Y —Vy¢X) =0 and TxdY = Ty¢X for X,Y € (D).
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Define an endomorphism F of ker I, by
F:=JP + ¢Q,

where (VxF)Y := VxFY — FVxY for X,Y € D(ker F,). Then it is not
difficult to get.

Lemma 2.8. Let F be a semi-slant submersion from a Kdhler manifold (M,
gum, J) onto a Riemannian manifold (N, gn). Then we have

(VxF)Y = ¢(VxPY —VxY) + BTxPY + Vx¢QY for X,Y € I'(ker F,).

Proposition 2.9. Let F' be a semi-slant submersion from an almost Hermitian
manifold (M, gnr, J) onto a Riemannian manifold (N, gn). Then we obtain

#*X = —cos’0X for X € T(Dy),
where 6 denotes the semi-slant angle of D,.

Proof. Since

0sf = gu(J X, 6X) = —9u (X, ¢°X) and cosf = 2
|JX] - [oX] | X - [oX] x|
we have )
cos? ) = % for X € I'(D2).
Hence,
#*X = —cos®’0X for X € T'(Ds). O

Remark 2.10. In particular, we easily see that the converse of Proposition 2.9
is also true.

Assume that the semi-slant angle 6 is not equal to § and define an endo-

morphism J of ker F, by
~ 1
Ji=JP+ —0¢Q.
cos
Then,
(1) J? = —id on kerF,.

Remark 2.11. Let F be a semi-slant submersion from an almost Hermitian man-
ifold (M, gar, J) onto a Riemannian manifold (N, gn). Assume that dim M =
2m, dim N =n, and 0 € [0, §). From (1), we have

dim(ker(F,),) = 2k and dim((ker(F,),)") =2m — 2k for p € M,

where k is a non-negative integer.
Therefore, n must be even.

Theorem 2.12. Let F be a semi-slant submersion from an almost Hermitian
manifold (M, gnr, J) onto a Riemannian manifold (N, gn) with the semi-slant

angle 6 € [0, 5). Then N is an even-dimensional manifold.
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Proposition 2.13. Let F' be a semi-slant submersion from a Kdhler manifold
(M, g, J) onto a Riemannian manifold (N, gn). Then the distribution ker F
defines a totally geodesic foliation if and only if

w(Vx oY 4 TxwY) + C(Tx Y + HVxwY) =0 for X,Y € I(ker F,).
Proof. For X, Y € I'(ker F,),
VxY = —JVxJY
= —J(VxoY + Tx Y + TxwY + HVxwY)
= —(0Vx @Y +wVx oY + BTx oY + CTx oY + ¢TxwY + wTxwY
+ BHV xwY + CHV xwY).
Thus,
VxY € D(ker F.) & w(Vx @Y + TxwY) + C(Tx ¢Y + HVxwY) =0. [
Similarly, we have:

Proposition 2.14. Let F' be a semi-slant submersion from a Kdhler mani-
fold (M, g, J) onto a Riemannian manifold (N, gn). Then the distribution
(ker F},)* defines a totally geodesic foliation if and only if

¢(VVxBY + AxCY )+ B(AxBY + HVxCY) =0 for X,Y € T'((ker F.)™h).

Proposition 2.15. Let F' be a semi-slant submersion from a Kdhler manifold
(M, gp,J) onto a Riemannian manifold (N,gn). Then the distribution D
defines a totally geodesic foliation if and only if

Q(dVxdY 4+ BTx oY) =0 and wVx @Y + CTxdpY =0
for X, Y € T'(Dy).
Proof. For X, Y € T'(D1), we get
VxY = —JVxJY
= —J(VxoY + Tx oY)
= —(¢Vx oY +wVxdY + BTxdY + CTx¢Y).
Hence,
VxY €T(D1) & Q(¢Vx oY + BTx¢Y) = 0 and wVx¢Y + CTx¢Y = 0.0]
In a similar way, we obtain:

Proposition 2.16. Let F be a semi-slant submersion from a Kdhler manifold
(M, gn, J) onto a Riemannian manifold (N,gn). Then the distribution Dsy
defines a totally geodesic foliation if and only if

P(G(Vx oY + TxwY) + B(Tx¢Y + HVxwY)) = 0,
W(Vx Y + TxwY) + C(TxdY + HV xwY) =0
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for XY € T'(Ds).

Theorem 2.17. Let F be a semi-slant submersion from a Kahler manifold
(M, g, J) onto a Riemannian manifold (N, gn). Then F is a totally geodesic
map if and only if

w(Vx oY + TxwY) + C(Tx oY + HVxwY) =0,
w(VxBZ + TxCZ) + C(Tx BZ + HV xCZ) =0
for X,Y € T'(ker F.) and Z € T'((ker F,)").
Proof. Since F' is a Riemannian submersion, we have
(VE)(Zy,Z5) =0 for Zi, Zo € T((ker F,)1).
For X,Y € I'(ker F,), we obtain
(VE)(X,Y)= — F,(VxY)
= F.(JVx(¢Y +wY))
= F(¢Vx oY +wVxoY + BTx Y + CTx oY + ¢TxwY
+ wTxwY + BHV xwY + CHV xwY).
Thus,
(VE)(X,Y) =0 & w(VxeY + TxwY) + C(Tx oY +HVxwY) = 0.
For X € T'(ker F.) and Z € T'((ker F,)1), we get
(VE)(X,Z) = —F,(VxZ)
= F.(JVx(BZ +C2))
= F,(¢VxBZ + wVxBZ + BTxBZ + CTxBZ + ¢TxCZ
+wTxCZ + BHV xCZ + CHVxCZ).

Hence,
(VF)(X,2) =04 w(VxBZ +TxCZ) + C(Tx BZ + HVxCZ) = 0.
Since (VF,)(X,Z) = (VF.)(Z,X), we get the result. O

Let F be a semi-slant submersion from a Kéhler manifold (M, gy, J) onto a
Riemannian manifold (N, gn). Assume that Dy is integrable. Choose a local or-
thonormal frame {v1,...,v;} of Dy and a local orthonormal frame {eq, ..., ea}
of Dy such that ey; = Jeg;—1 for 1 < ¢ < k. Since

Fi(Viesi1J€2i-1) = —Fyu(Ve,,_,€2i-1)
for 1 <i < k, we have

!
trace(VF,) =0 & ZF*(ijUj) =0.

j=1
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Theorem 2.18. Let F be a semi-slant submersion from a Kahler manifold
(M, g, J) onto a Riemannian manifold (N,gn) such that Dy is integrable.
Then F is a harmonic map if and only if

trace(VF.) =0 on Ds.

Let F: (M,gm) — (N,gn) be a Riemannian submersion. The map F is
called a Riemannian submersion with totally umbilical fibers if

(2) TxY =gu(X,Y)H for X,Y € I'(ker F},),

where H is the mean curvature vector field of the fiber.
In a similar way with Lemma 4.2 of [18], we obtain:

Lemma 2.19. Let F be a semi-slant submersion with totally umbilical fibers
from a Kdhler manifold (M, g, J) onto a Riemannian manifold (N, gn). Then
we have

H € T'(wDs).

Proof. For X, Y € T'(D;) and W € T'(u), we get
TxJY +VxJY =VyxJY = JVxY = BTxY + CTxY + ¢VxY + wVxV
so that
g (Tx JY, W) = gy (CTxY, W).

By (2), with a simple calculation we obtain

gm (X, JY )gu (H, W) = —gm (X, Y)gm (H, JW).
Interchanging the role of X and Y, we get

g (Y, JX) g (HW) = —gm (Y, X) g (H, JW)
so that combining the above two equations, we have

g (X, Y gy (H, JW) =0

which means H € T'(wDy), since Ju = p. Therefore, we obtain the result. [

Remark 2.20. Let F be a semi-slant submersion from a Kéhler manifold (M,
gm,J) onto a Riemannian manifold (N, gn). Then there is a distribution
Dy C ker F, such that

ker F, =Dy @ Dy, J(D1) = Dy,

and the angle 0 = 0(X) between JX and the space (Ds), is constant for nonzero
X € (D3)q and g € M, where Dy is the orthogonal complement of D; in ker F.
Furthermore,

¢Dy C Dy, wDy C (ker F,)*, (ker F,)* = wDy @ p,

where y is the orthogonal complement of wDs in (ker F,)' and is invariant
under J. As we know, the holomorphic sectional curvatures determine the
Riemannian curvature tensor in a Kéhler manifold.
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Given a plane P being invariant by J in 1, M, p € M, there is an orthonor-

mal basis {X,JX} of P. Denote by K(P), K.(P), and K(P) the sectional
curvatures of the plane P in M, N, and the fiber F~1(F(p)), respectively,
where K. (P) denotes the sectional curvature of the plane P, = (F. X, F,.JX)
in N. Let K(X AY) be the sectional curvature of the plane spanned by the
tangent vectors X,Y € T,M, p € M. Using both Corollary 1 of [14, p. 465]
and (1.27) of [7, p. 12], we obtain the following:

(1) If P C (D1)p, then with some computations we have
K(P)=K(P)+ |Tx X|* = [Tx JX|* = gu(Tx X, J[J X, X]).
(2) If P C (D2 ® wDs), with X € (D3),, then we get
K(P)= cos®0- K(X N ¢pX) +29m((VoxT)(X, X)
— (VxT)(¢X, X),wX) +sin?0 - K(X AwX).
(3) If P C (u)p, then we obtain
K(P)=K.(P)-3|VJVxX|*

3. Examples

Example 3.1. Let F be a slant submersion from an almost Hermitian manifold
(M, gp,J) onto a Riemannian manifold (N, gy) [17]. Then the map F is a
semi-slant submersion with Dy = ker Fi.

Example 3.2. Let F' be a semi-invariant submersion from an almost Hermitian
manifold (M, g, J) onto a Riemannian manifold (N, gn) [18]. Then the map
F' is a semi-slant submersion with the semi-slant angle 6 = 7.

Example 3.3. Let F' be an almost h-slant submersion from a hyperkahler man-
ifold (M, g, I, J, K) onto a Riemannian manifold (N, gy) such that (I, J, K)
is an almost h-slant basis [15]. Then the map F : (M, ga, R) — (N,gn) is a
semi-slant submersion with Dy = ker F for R € {I,J, K'}.

Example 3.4. Let F' be an almost h-semi-invariant submersion from a hy-
perkéhler manifold (M, g, I, J, K) onto a Riemannian manifold (N, gy ) such
that (I,J, K) is an almost h-semi-invariant basis [16]. Then the map F :
(M,gnm, R) — (N,gn) is a semi-slant submersion with the semi-slant angle
0=7%for Re{l,J K}
Example 3.5. Define a map F : R® — R? by

F(x1,22,...,26) = (z3sina — x5 cos o, Tg),

where a € (0, §). Then the map F' is a semi-slant submersion such that

g 0 0 0 0
Dy ={(—,— dDy={— — +sina—
1 <6m1’69€2> an 2 <a$4,coso¢a$3+smaax5>

with the semi-slant angle 6§ = a.
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Example 3.6. Define a map F : R® — R? by

F(xy1,22,...,18) = (%J;Sa%) .

Then the map F is a semi-slant submersion such that

o o0 o0 9 a 0 0
Dy={(—— - = 2 D, =( 2 Z 2
! <82L'1, (9:62, (9:63, a$4> and 2 <82L'7’ al'g, + 8:08>

with the semi-slant angle 0 = 7.

Example 3.7. Define a map F : R!1? — R5 by
Ts +Tg Tz +Tg Ty +ZE10>

F(x1,22,...,210) = | X2, 1, , ,
(w1, 22 10) < 2, %1 NG NG NG
Then the map F' is a semi-slant submersion such that
g 0 0 0 0 0 0 0
Di=(— —, — 4+ —, ——— dDy=(———+ —
! <6.T37 6.1'47 6907 + 6959’ Gacg + 6m10> an 2 < 6905 + 6$6>

with the semi-slant angle 6 = 7.

Example 3.8. Define a map F : R — R* by

r3 — Iy X7 — XT9 >
T T
\/5 s L6y \/5 s L8

Then the map F is a semi-slant submersion such that

p=(% 9\ ap,=(2 9 9, 0 9 9
te 81'1, (9:62 27 (9:63 81'5, a:L'7 (9:69’ (9:64’ 81'10

with the semi-slant angle 0 = 7.

F(x1,22,...,710) = <

Example 3.9. Define a map F : R® = R* by
F(x1,x2,...,28) = (21,22, ¥3 coOs @ — 5 sina, x4 sin 8 — xg cos ) ,
where o and 3 are constant. Then the map F' is a semi-slant submersion such

that

o 0 0 0 0 0
Dy ={-2 2 and D, = { sina— 2 2 ysinf—
1 <8z7’ 8zg> and Dy <smaax3 + cosaa% , cosﬁaz4 + smﬁax6>
with the semi-slant angle 6 with cosé = |sin(a + 8)|.

Example 3.10. Let G be a slant submersion from an almost Hermitian man-
ifold (M3, gar,, J1) onto a Riemannian manifold (N, gx) with the slant angle
0 and (Mo, gu,,J2) an almost Hermitian manifold. Denote by (M, g,J) the
warped product of (M1, gu,, J1) and (Ma, gar,, J2) by a positive function f on
M, [7], where J = J; X Ja. Define a map F : (M, g,J) — (N,gn) by

F(z,y) = G(z) forxz € My and y € Ms.
Then the map F' is a semi-slant submersion such that

Dl = TM2 and D2 = ker G*
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with the semi-slant angle 6.

References

[1] A. Bejancu, Geometry of CR-submanifolds, Kluwer Academic, 1986.
[2] J. P. Bourguignon and H. B. Lawson, A mathematician’s visit to Kaluza-Klein theory,

3]

Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 143-163 (1990).
, Stability and isolation phenomena for Yang-mills fields, Comm. Math. Phys.
79 (1981), no. 2, 189-230.

[4] P. Baird and J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford

[5]
[6]
[7]
(8]
[9]
(10]
(11]
(12]
(13]
(14]
[15]
[16]
(17]
18]
(19]
20]

(21]

science publications, 2003.

B. Y. Chen, Geometry of Slant Submaniflods, Katholieke Universiteit Leuven, Leuven,
1990.

V. Cortés, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean
supersymmetry. 1. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp.
M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics,
World Scientific Publishing Co., 2004.

A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech
16 (1967), 715-737.

S. Ianus, A. M. Ionescu, R. Mazzocco, G. E. Vilcu, Riemannian submersions from almost
contact metric manifolds, Abh. Math. Semin. Univ. Hamb. 81 (2011), no. 1, 101-114.
S. Tanus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic
manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89.

S. Tanus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf
manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325.

, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.)
The Mathematical Heritage of C. F. Gauss, 358-371, World Scientific, River Edge, 1991.
M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41
(2000), no. 10, 6918-6929.

B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966),
458-469.

K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338.

, H-semi-invariant submersions, Taiwan. J. Math. 16 (2012), no. 5, 1865-1878.
B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci.
Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.

, Semi-tnvariant submersions from almost Hermitian manifolds, Canad. Math.
Bull. 56 (2013), no. 1, 173-183.

, Anti-invariant Riemannian submersions from almost Hermitian manifolds,
Cent. Eur. J. Math. 8 (2010), no. 3, 437-447.

B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), no. 1, 147—
165.

, G, G’ -Riemannian submersions and nonlinear gauge field equations of general
relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M.
Morse, Teubner-Texte Math. 57 (1983), 324-349, Teubner, Leipzig.

KWANG-SOON PARK

DEPARTMENT OF MATHEMATICAL SCIENCES
SEOUL NATIONAL UNIVERSITY

SEOUL 151-747, KOREA

E-mail address: parkksn@gmail.com



962 KWANG-SOON PARK AND RAJENDRA PRASAD

RAJENDRA PRASAD

DEPARTMENT OF MATHEMATICS AND ASTRONOMY
UNIVERSITY OF LUCKNOW

LUuckNOW-226007, INDIA

E-mail address: rp.manpur@rediffmail.com



