SEMI-SLANT SUBMERSIONS

Kwang-Soon Park and Rajendra Prasad

Abstract

We introduce semi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds as a generalization of slant submersions, semi-invariant submersions, anti-invariant submersions, etc. We obtain characterizations, investigate the integrability of distributions and the geometry of foliations, etc. We also find a condition for such submersions to be harmonic. Moreover, we give lots of examples.

1. Introduction

Let F be a C^{∞}-submersion from a semi-Riemannian manifold (M, g_{M}) onto a semi-Riemannian manifold $\left(N, g_{N}\right)$. Then according to the conditions on the $\operatorname{map} F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$, we have the following submersions:

Semi-Riemannian submersion and Lorentzian submersion [7], Riemannian submersion ([8], [14]), slant submersion ([5], [17]), almost Hermitian submersion [20], contact-complex submersion [9], quaternionic submersion [10], almost h-slant submersion and h-slant submersion [15], anti-invariant submersion [19], semi-invariant submersion [18], h-semi-invariant submersion [16], etc. As we know, Riemannian submersions are related with physics and have their applications in the Yang-Mills theory ([3], [21]), Kaluza-Klein theory ([2], [11]), Supergravity and superstring theories ([12], [13]), etc. Let (M, g_{M}) and (N, g_{N}) be Riemannian manifolds and $F: M \mapsto N$ a C^{∞}-submersion. The map F is said to be Riemannian submersion if the differential F_{*} preserves the lengths of horizontal vectors [10]. Let $\left(M, g_{M}, J\right)$ and $\left(M_{1}, g_{M_{1}}, J_{1}\right)$ be almost Hermitian manifolds. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a slant submersion if the angle $\theta(X)$ between $J X$ and the space $\operatorname{ker}\left(F_{*}\right)_{p}$ is constant for any nonzero $X \in T_{p} M$ and $p \in M$ [17]. We call $\theta(X)$ a slant angle. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called an anti-invariant submersion if $J X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ for $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ [19]. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(M_{1}, g_{M_{1}}, J_{1}\right)$ is called an almost Hermitian submersion if F is an almost complex map, i.e., $F_{*} \circ J=J_{1} \circ F_{*}$ [20]. A Riemannian

[^0]submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semi-invariant submersion if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that
$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, J\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$
where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}[17]$. Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds and $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ a smooth map. The second fundamental form of F is given by
$$
\left(\nabla F_{*}\right)(X, Y):=\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X} Y\right) \quad \text { for } X, Y \in \Gamma(T M)
$$
where ∇^{F} is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the metrics g_{M} and g_{N} [4]. Recall that F is said to be harmonic if $\operatorname{trace}\left(\nabla F_{*}\right)=0$ and F is called a totally geodesic map if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma(T M)[4]$. The paper is organized as follows. In Section 2 we give the definition of the semi-slant submersion and obtain some interesting properties on them. In Section 3 we construct some examples for the semi-slant submersion.

2. Semi-slant submersions

Definition 2.1. Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold and (N, g_{N}) a Riemannian manifold. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semi-slant submersion if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{q}$ and $q \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$.

We call the angle θ a semi-slant angle.
Remark 2.2. As we know, a semi-slant submersion is the generalized version of a slant submersion. There are some similarities and differences between them. For the condition for such submersions to be harmonic, a semi-slant submersion has much more nice form than a slant submersion. But for the one for such submersions to be totally geodesic, two cases have the same condition. With the tensor ω to be parallel, we obtain some results on the slant submersions. For the semi-slant submersions with totally umbilical fibers, we have some results for the mean curvature vector field.

Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a semi-slant submersion. Then there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{q}$ and $q \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$.

Then for $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
X=P X+Q X
$$

where $P X \in \Gamma\left(\mathcal{D}_{1}\right)$ and $Q X \in \Gamma\left(\mathcal{D}_{2}\right)$.
For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
J X=\phi X+\omega X
$$

where $\phi X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\omega X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
J Z=B Z+C Z,
$$

where $B Z \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $C Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $U \in \Gamma(T M)$, we have

$$
U=\mathcal{V} U+\mathcal{H} U
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Then

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\omega \mathcal{D}_{2} \oplus \mu
$$

where μ is the orthogonal complement of $\omega \mathcal{D}_{2}$ in $\left(\operatorname{ker} F_{*}\right)^{\perp}$ and is invariant under J. Furthermore,

$$
\begin{aligned}
& \phi \mathcal{D}_{1}=\mathcal{D}_{1}, \omega \mathcal{D}_{1}=0, \phi \mathcal{D}_{2} \subset \mathcal{D}_{2}, B\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\mathcal{D}_{2} \\
& \phi^{2}+B \omega=-i d, C^{2}+\omega B=-i d, \omega \phi+C \omega=0, B C+\phi B=0
\end{aligned}
$$

Define the tensors \mathcal{T} and \mathcal{A} by

$$
\mathcal{A}_{E} F=\mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F, \quad \mathcal{T}_{E} F=\mathcal{H} \nabla_{\mathcal{V}_{E}} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V}_{E}} \mathcal{H} F
$$

for vector fields E, F on M, where ∇ is the Levi-Civita connection of g_{M}. Define

$$
\left(\nabla_{X} \phi\right) Y:=\hat{\nabla}_{X} \phi Y-\phi \widehat{\nabla}_{X} Y
$$

and

$$
\left(\nabla_{X} \omega\right) Y:=\mathcal{H} \nabla_{X} \omega Y-\omega \widehat{\nabla}_{X} Y
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$, where $\widehat{\nabla}_{X} Y:=\mathcal{V} \nabla_{X} Y$. Then we easily have:
Lemma 2.3. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a semi-slant submersion. Then we get
(a)

$$
\begin{aligned}
\hat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y & =\phi \widehat{\nabla}_{X} Y+B \mathcal{T}_{X} Y \\
\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y & =\omega \widehat{\nabla}_{X} Y+C \mathcal{T}_{X} Y
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(b)

$$
\begin{aligned}
\mathcal{V} \nabla_{Z} B W+\mathcal{A}_{Z} C W & =\phi \mathcal{A}_{Z} W+B \mathcal{H} \nabla_{Z} W \\
\mathcal{A}_{Z} B W+\mathcal{H} \nabla_{Z} C W & =\omega \mathcal{A}_{Z} W+C \mathcal{H} \nabla_{Z} W
\end{aligned}
$$

for $Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\begin{aligned}
\hat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z & =\phi \mathcal{T}_{X} Z+B \mathcal{H} \nabla_{X} Z \\
\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z & =\omega \mathcal{T}_{X} Z+C \mathcal{H} \nabla_{X} Z
\end{aligned}
$$

for $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Theorem 2.4. Let F be a semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the complex distribution \mathcal{D}_{1} is integrable if and only if we have

$$
\omega\left(\widehat{\nabla}_{X} Y-\widehat{\nabla}_{Y} X\right)=C\left(\mathcal{T}_{Y} X-\mathcal{T}_{X} Y\right) \quad \text { for } X, Y \in \Gamma\left(\mathcal{D}_{1}\right)
$$

Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $[X, Y] \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we obtain

$$
\begin{aligned}
g_{M}(J[X, Y], Z)= & g_{M}\left(J\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right) \\
= & g_{M}\left(\phi \widehat{\nabla}_{X} Y+\omega \widehat{\nabla}_{X} Y+B \mathcal{T}_{X} Y+C \mathcal{T}_{X} Y-\phi \widehat{\nabla}_{Y} X-\omega \widehat{\nabla}_{Y} X\right. \\
& \left.-B \mathcal{T}_{Y} X-C \mathcal{T}_{Y} X, Z\right) \\
= & g_{M}\left(\omega \widehat{\nabla}_{X} Y+C \mathcal{T}_{X} Y-\omega \widehat{\nabla}_{Y} X-C \mathcal{T}_{Y} X, Z\right)
\end{aligned}
$$

Therefore, we have the result.
Similarly, we get:
Theorem 2.5. Let F be a semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the slant distribution \mathcal{D}_{2} is integrable if and only if we obtain

$$
P\left(\phi\left(\widehat{\nabla}_{X} Y-\widehat{\nabla}_{Y} X\right)+B\left(\mathcal{T}_{X} Y-\mathcal{T}_{Y} X\right)\right)=0 \quad \text { for } X, Y \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Lemma 2.6. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a semi-slant submersion. Then the slant distribution \mathcal{D}_{2} is integrable if and only if we obtain

$$
P\left(\widehat{\nabla}_{X} \phi Y-\widehat{\nabla}_{Y} \phi X+\mathcal{T}_{X} \omega Y-\mathcal{T}_{Y} \omega X\right)=0 \quad \text { for } X, Y \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$ and $Z \in \Gamma\left(\mathcal{D}_{1}\right)$, since $[X, Y] \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
\begin{aligned}
g_{M}(J[X, Y], Z)= & g_{M}\left(\nabla_{X} J Y-\nabla_{Y} J X, Z\right) \\
= & g_{M}\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \phi Y+\mathcal{T}_{X} \omega Y+\mathcal{H} \nabla_{X} \omega Y-\widehat{\nabla}_{Y} \phi X-\mathcal{T}_{Y} \phi X\right. \\
& \left.-\mathcal{T}_{Y} \omega X-\mathcal{H} \nabla_{Y} \omega X, Z\right) \\
= & g_{M}\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y-\widehat{\nabla}_{Y} \phi X-\mathcal{T}_{Y} \omega X, Z\right) .
\end{aligned}
$$

Therefore, the result follows.
In a similar way, we have:
Lemma 2.7. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a semi-slant submersion. Then the complex distribution \mathcal{D}_{1} is integrable if and only if we get

$$
Q\left(\widehat{\nabla}_{X} \phi Y-\widehat{\nabla}_{Y} \phi X\right)=0 \text { and } \mathcal{T}_{X} \phi Y=\mathcal{T}_{Y} \phi X \quad \text { for } X, Y \in \Gamma\left(\mathcal{D}_{1}\right)
$$

Define an endomorphism \widehat{F} of $\operatorname{ker} F_{*}$ by

$$
\widehat{F}:=J P+\phi Q,
$$

where $\left(\nabla_{X} \widehat{F}\right) Y:=\widehat{\nabla}_{X} \widehat{F} Y-\widehat{F} \widehat{\nabla}_{X} Y$ for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$. Then it is not difficult to get.
Lemma 2.8. Let F be a semi-slant submersion from a Kähler manifold (M, $\left.g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we have

$$
\left(\nabla_{X} \widehat{F}\right) Y=\phi\left(\widehat{\nabla}_{X} P Y-\widehat{\nabla}_{X} Y\right)+B \mathcal{T}_{X} P Y+\widehat{\nabla}_{X} \phi Q Y \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)
$$

Proposition 2.9. Let F be a semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we obtain

$$
\phi^{2} X=-\cos ^{2} \theta X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

where θ denotes the semi-slant angle of \mathcal{D}_{2}.
Proof. Since

$$
\cos \theta=\frac{g_{M}(J X, \phi X)}{|J X| \cdot|\phi X|}=\frac{-g_{M}\left(X, \phi^{2} X\right)}{|X| \cdot|\phi X|} \text { and } \cos \theta=\frac{|\phi X|}{|J X|}
$$

we have

$$
\cos ^{2} \theta=-\frac{g_{M}\left(X, \phi^{2} X\right)}{|X|^{2}} \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Hence,

$$
\phi^{2} X=-\cos ^{2} \theta X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Remark 2.10. In particular, we easily see that the converse of Proposition 2.9 is also true.

Assume that the semi-slant angle θ is not equal to $\frac{\pi}{2}$ and define an endomorphism \widehat{J} of ker F_{*} by

$$
\widehat{J}:=J P+\frac{1}{\cos \theta} \phi Q
$$

Then,

$$
\begin{equation*}
\widehat{J}^{2}=-i d \quad \text { on } \operatorname{ker} F_{*} . \tag{1}
\end{equation*}
$$

Remark 2.11. Let F be a semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Assume that $\operatorname{dim} M=$ $2 m, \operatorname{dim} N=n$, and $\theta \in\left[0, \frac{\pi}{2}\right)$. From (1), we have

$$
\operatorname{dim}\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)=2 k \text { and } \operatorname{dim}\left(\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp}\right)=2 m-2 k \quad \text { for } p \in M
$$

where k is a non-negative integer.
Therefore, n must be even.
Theorem 2.12. Let F be a semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ with the semi-slant angle $\theta \in\left[0, \frac{\pi}{2}\right)$. Then N is an even-dimensional manifold.

Proposition 2.13. Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution $\operatorname{ker} F_{*}$ defines a totally geodesic foliation if and only if

$$
\omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0 \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right) .
$$

Proof. For $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$,

$$
\begin{aligned}
\nabla_{X} Y= & -J \nabla_{X} J Y \\
= & -J\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \phi Y+\mathcal{T}_{X} \omega Y+\mathcal{H} \nabla_{X} \omega Y\right) \\
= & -\left(\phi \widehat{\nabla}_{X} \phi Y+\omega \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y+C \mathcal{T}_{X} \phi Y+\phi \mathcal{T}_{X} \omega Y+\omega \mathcal{T}_{X} \omega Y\right. \\
& \left.+B \mathcal{H} \nabla_{X} \omega Y+C \mathcal{H} \nabla_{X} \omega Y\right)
\end{aligned}
$$

Thus,

$$
\nabla_{X} Y \in \Gamma\left(\operatorname{ker} F_{*}\right) \Leftrightarrow \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0
$$

Similarly, we have:
Proposition 2.14. Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation if and only if
$\phi\left(\mathcal{V} \nabla_{X} B Y+\mathcal{A}_{X} C Y\right)+B\left(\mathcal{A}_{X} B Y+\mathcal{H} \nabla_{X} C Y\right)=0 \quad$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proposition 2.15. Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution \mathcal{D}_{1} defines a totally geodesic foliation if and only if

$$
Q\left(\phi \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y\right)=0 \text { and } \omega \widehat{\nabla}_{X} \phi Y+C \mathcal{T}_{X} \phi Y=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$, we get

$$
\begin{aligned}
\nabla_{X} Y & =-J \nabla_{X} J Y \\
& =-J\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \phi Y\right) \\
& =-\left(\phi \widehat{\nabla}_{X} \phi Y+\omega \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y+C \mathcal{T}_{X} \phi Y\right)
\end{aligned}
$$

Hence,

$$
\nabla_{X} Y \in \Gamma\left(\mathcal{D}_{1}\right) \Leftrightarrow Q\left(\phi \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y\right)=0 \text { and } \omega \widehat{\nabla}_{X} \phi Y+C \mathcal{T}_{X} \phi Y=0
$$

In a similar way, we obtain:
Proposition 2.16. Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution \mathcal{D}_{2} defines a totally geodesic foliation if and only if

$$
\begin{aligned}
& P\left(\phi\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+B\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)\right)=0 \\
& \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
Theorem 2.17. Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then F is a totally geodesic map if and only if

$$
\begin{aligned}
& \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0 \\
& \omega\left(\widehat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z\right)+C\left(\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Since F is a Riemannian submersion, we have

$$
\left(\nabla F_{*}\right)\left(Z_{1}, Z_{2}\right)=0 \quad \text { for } Z_{1}, Z_{2} \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) .
$$

For $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we obtain

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, Y)= & -F_{*}\left(\nabla_{X} Y\right) \\
= & F_{*}\left(J \nabla_{X}(\phi Y+\omega Y)\right) \\
= & F_{*}\left(\phi \widehat{\nabla}_{X} \phi Y+\omega \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y+C \mathcal{T}_{X} \phi Y+\phi \mathcal{T}_{X} \omega Y\right. \\
& \left.+\omega \mathcal{T}_{X} \omega Y+B \mathcal{H} \nabla_{X} \omega Y+C \mathcal{H} \nabla_{X} \omega Y\right)
\end{aligned}
$$

Thus,

$$
\left(\nabla F_{*}\right)(X, Y)=0 \Leftrightarrow \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0
$$

For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, Z)= & -F_{*}\left(\nabla_{X} Z\right) \\
= & F_{*}\left(J \nabla_{X}(B Z+C Z)\right) \\
= & F_{*}\left(\phi \widehat{\nabla}_{X} B Z+\omega \widehat{\nabla}_{X} B Z+B \mathcal{T}_{X} B Z+C \mathcal{T}_{X} B Z+\phi \mathcal{T}_{X} C Z\right. \\
& \left.+\omega \mathcal{T}_{X} C Z+B \mathcal{H} \nabla_{X} C Z+C \mathcal{H} \nabla_{X} C Z\right)
\end{aligned}
$$

Hence,

$$
\left(\nabla F_{*}\right)(X, Z)=0 \Leftrightarrow \omega\left(\widehat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z\right)+C\left(\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z\right)=0
$$

Since $\left(\nabla F_{*}\right)(X, Z)=\left(\nabla F_{*}\right)(Z, X)$, we get the result.
Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Assume that \mathcal{D}_{1} is integrable. Choose a local orthonormal frame $\left\{v_{1}, \ldots, v_{l}\right\}$ of \mathcal{D}_{2} and a local orthonormal frame $\left\{e_{1}, \ldots, e_{2 k}\right\}$ of \mathcal{D}_{1} such that $e_{2 i}=J e_{2 i-1}$ for $1 \leq i \leq k$. Since

$$
F_{*}\left(\nabla_{J e_{2 i-1}} J e_{2 i-1}\right)=-F_{*}\left(\nabla_{e_{2 i-1}} e_{2 i-1}\right)
$$

for $1 \leq i \leq k$, we have

$$
\operatorname{trace}\left(\nabla F_{*}\right)=0 \Leftrightarrow \sum_{j=1}^{l} F_{*}\left(\nabla_{v_{j}} v_{j}\right)=0 .
$$

Theorem 2.18. Let F be a semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that \mathcal{D}_{1} is integrable. Then F is a harmonic map if and only if

$$
\operatorname{trace}\left(\nabla F_{*}\right)=0 \quad \text { on } \mathcal{D}_{2} .
$$

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a Riemannian submersion. The map F is called a Riemannian submersion with totally umbilical fibers if

$$
\begin{equation*}
\mathcal{T}_{X} Y=g_{M}(X, Y) H \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right) \tag{2}
\end{equation*}
$$

where H is the mean curvature vector field of the fiber.
In a similar way with Lemma 4.2 of [18], we obtain:
Lemma 2.19. Let F be a semi-slant submersion with totally umbilical fibers from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we have

$$
H \in \Gamma\left(\omega \mathcal{D}_{2}\right) .
$$

Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$ and $W \in \Gamma(\mu)$, we get

$$
\mathcal{T}_{X} J Y+\widehat{\nabla}_{X} J Y=\nabla_{X} J Y=J \nabla_{X} Y=B \mathcal{T}_{X} Y+C \mathcal{T}_{X} Y+\phi \widehat{\nabla}_{X} Y+\omega \widehat{\nabla}_{X} Y
$$

so that

$$
g_{M}\left(\mathcal{T}_{X} J Y, W\right)=g_{M}\left(C \mathcal{T}_{X} Y, W\right)
$$

By (2), with a simple calculation we obtain

$$
g_{M}(X, J Y) g_{M}(H, W)=-g_{M}(X, Y) g_{M}(H, J W)
$$

Interchanging the role of X and Y, we get

$$
g_{M}(Y, J X) g_{M}(H, W)=-g_{M}(Y, X) g_{M}(H, J W)
$$

so that combining the above two equations, we have

$$
g_{M}(X, Y) g_{M}(H, J W)=0
$$

which means $H \in \Gamma\left(\omega \mathcal{D}_{2}\right)$, since $J \mu=\mu$. Therefore, we obtain the result.
Remark 2.20. Let F be a semi-slant submersion from a Kähler manifold (M, $\left.g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{q}$ and $q \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$. Furthermore,

$$
\phi \mathcal{D}_{2} \subset \mathcal{D}_{2}, \omega \mathcal{D}_{2} \subset\left(\operatorname{ker} F_{*}\right)^{\perp},\left(\operatorname{ker} F_{*}\right)^{\perp}=\omega \mathcal{D}_{2} \oplus \mu,
$$

where μ is the orthogonal complement of $\omega \mathcal{D}_{2}$ in $\left(\operatorname{ker} F_{*}\right)^{\perp}$ and is invariant under J. As we know, the holomorphic sectional curvatures determine the Riemannian curvature tensor in a Kähler manifold.

Given a plane P being invariant by J in $T_{p} M, p \in M$, there is an orthonormal basis $\{X, J X\}$ of P. Denote by $K(P), K_{*}(P)$, and $\widehat{K}(P)$ the sectional curvatures of the plane P in M, N, and the fiber $F^{-1}(F(p))$, respectively, where $K_{*}(P)$ denotes the sectional curvature of the plane $P_{*}=\left\langle F_{*} X, F_{*} J X\right\rangle$ in N. Let $K(X \wedge Y)$ be the sectional curvature of the plane spanned by the tangent vectors $X, Y \in T_{p} M, p \in M$. Using both Corollary 1 of [14, p. 465] and (1.27) of [7, p. 12], we obtain the following:
(1) If $P \subset\left(\mathcal{D}_{1}\right)_{p}$, then with some computations we have

$$
K(P)=\widehat{K}(P)+\left|\mathcal{T}_{X} X\right|^{2}-\left|\mathcal{T}_{X} J X\right|^{2}-g_{M}\left(\mathcal{T}_{X} X, J[J X, X]\right)
$$

(2) If $P \subset\left(\mathcal{D}_{2} \oplus \omega \mathcal{D}_{2}\right)_{p}$ with $X \in\left(\mathcal{D}_{2}\right)_{p}$, then we get

$$
\begin{aligned}
K(P)= & \cos ^{2} \theta \cdot K(X \wedge \phi X)+2 g_{M}\left(\left(\nabla_{\phi X} T\right)(X, X)\right. \\
& \left.-\left(\nabla_{X} T\right)(\phi X, X), \omega X\right)+\sin ^{2} \theta \cdot K(X \wedge \omega X) .
\end{aligned}
$$

(3) If $P \subset(\mu)_{p}$, then we obtain

$$
K(P)=K_{*}(P)-3\left|\mathcal{V} J \nabla_{X} X\right|^{2} .
$$

3. Examples

Example 3.1. Let F be a slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)[17]$. Then the map F is a semi-slant submersion with $\mathcal{D}_{2}=\operatorname{ker} F_{*}$.

Example 3.2. Let F be a semi-invariant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ [18]. Then the map F is a semi-slant submersion with the semi-slant angle $\theta=\frac{\pi}{2}$.

Example 3.3. Let F be an almost h-slant submersion from a hyperkähler manifold $\left(M, g_{M}, I, J, K\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an almost h-slant basis [15]. Then the map $F:\left(M, g_{M}, R\right) \mapsto\left(N, g_{N}\right)$ is a semi-slant submersion with $\mathcal{D}_{2}=\operatorname{ker} F_{*}$ for $R \in\{I, J, K\}$.

Example 3.4. Let F be an almost h-semi-invariant submersion from a hyperkähler manifold $\left(M, g_{M}, I, J, K\right)$ onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an almost h-semi-invariant basis [16]. Then the map F : $\left(M, g_{M}, R\right) \mapsto\left(N, g_{N}\right)$ is a semi-slant submersion with the semi-slant angle $\theta=\frac{\pi}{2}$ for $R \in\{I, J, K\}$.
Example 3.5. Define a map $F: \mathbb{R}^{6} \mapsto \mathbb{R}^{2}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{6}\right)=\left(x_{3} \sin \alpha-x_{5} \cos \alpha, x_{6}\right)
$$

where $\alpha \in\left(0, \frac{\pi}{2}\right)$. Then the map F is a semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{4}}, \cos \alpha \frac{\partial}{\partial x_{3}}+\sin \alpha \frac{\partial}{\partial x_{5}}\right\rangle
$$

with the semi-slant angle $\theta=\alpha$.

Example 3.6. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{2}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{8}\right)=\left(\frac{x_{5}-x_{8}}{\sqrt{2}}, x_{6}\right)
$$

Then the map F is a semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{5}}+\frac{\partial}{\partial x_{8}}\right\rangle
$$

with the semi-slant angle $\theta=\frac{\pi}{4}$.
Example 3.7. Define a map $F: \mathbb{R}^{10} \mapsto \mathbb{R}^{5}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{10}\right)=\left(x_{2}, x_{1}, \frac{x_{5}+x_{6}}{\sqrt{2}}, \frac{x_{7}+x_{9}}{\sqrt{2}}, \frac{x_{8}+x_{10}}{\sqrt{2}}\right)
$$

Then the map F is a semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}},-\frac{\partial}{\partial x_{7}}+\frac{\partial}{\partial x_{9}},-\frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{10}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle-\frac{\partial}{\partial x_{5}}+\frac{\partial}{\partial x_{6}}\right\rangle
$$

with the semi-slant angle $\theta=\frac{\pi}{2}$.
Example 3.8. Define a map $F: \mathbb{R}^{10} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{10}\right)=\left(\frac{x_{3}-x_{5}}{\sqrt{2}}, x_{6}, \frac{x_{7}-x_{9}}{\sqrt{2}}, x_{8}\right)
$$

Then the map F is a semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{7}}+\frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{10}}\right\rangle
$$

with the semi-slant angle $\theta=\frac{\pi}{4}$.
Example 3.9. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{8}\right)=\left(x_{1}, x_{2}, x_{3} \cos \alpha-x_{5} \sin \alpha, x_{4} \sin \beta-x_{6} \cos \beta\right)
$$

where α and β are constant. Then the map F is a semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{8}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\sin \alpha \frac{\partial}{\partial x_{3}}+\cos \alpha \frac{\partial}{\partial x_{5}}, \cos \beta \frac{\partial}{\partial x_{4}}+\sin \beta \frac{\partial}{\partial x_{6}}\right\rangle
$$

with the semi-slant angle θ with $\cos \theta=|\sin (\alpha+\beta)|$.
Example 3.10. Let G be a slant submersion from an almost Hermitian manifold ($M_{1}, g_{M_{1}}, J_{1}$) onto a Riemannian manifold (N, g_{N}) with the slant angle θ and $\left(M_{2}, g_{M_{2}}, J_{2}\right)$ an almost Hermitian manifold. Denote by (M, g, J) the warped product of $\left(M_{1}, g_{M_{1}}, J_{1}\right)$ and $\left(M_{2}, g_{M_{2}}, J_{2}\right)$ by a positive function f on $M_{1}[7]$, where $J=J_{1} \times J_{2}$. Define a map $F:(M, g, J) \mapsto\left(N, g_{N}\right)$ by

$$
F(x, y)=G(x) \quad \text { for } x \in M_{1} \text { and } y \in M_{2}
$$

Then the map F is a semi-slant submersion such that

$$
\mathcal{D}_{1}=T M_{2} \text { and } \mathcal{D}_{2}=\operatorname{ker} G_{*}
$$

with the semi-slant angle θ.

References

[1] A. Bejancu, Geometry of CR-submanifolds, Kluwer Academic, 1986.
[2] J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 143-163 (1990).
\qquad , Stability and isolation phenomena for Yang-mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230.
[4] P. Baird and J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford science publications, 2003.
[5] B. Y. Chen, Geometry of Slant Submaniflods, Katholieke Universiteit Leuven, Leuven, 1990.
[6] V. Cortés, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp.
[7] M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., 2004.
[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech 16 (1967), 715-737.
[9] S. Ianus, A. M. Ionescu, R. Mazzocco, G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hamb. 81 (2011), no. 1, 101-114.
[10] S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89.
[11] S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325.
[12] , Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, 358-371, World Scientific, River Edge, 1991.
[13] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929.
[14] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 458-469.
[15] K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338.
[16] \qquad , H-semi-invariant submersions, Taiwan. J. Math. 16 (2012), no. 5, 1865-1878.
[17] B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.
[18] , Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2013), no. 1, 173-183.
[19] _, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447.
[20] B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), no. 1, 147165.
[21] , G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse, Teubner-Texte Math. 57 (1983), 324-349, Teubner, Leipzig.

Kwang-Soon Park
Department of Mathematical Sciences
Seoul National University
Seoul 151-747, Korea
E-mail address: parkksn@gmail.com

Rajendra Prasad
Department of Mathematics and Astronomy
University of Lucknow
Lucknow-226007, IndiA
E-mail address: rp.manpur@rediffmail.com

[^0]: Received April 19, 2012; Revised July 27, 2012.
 2010 Mathematics Subject Classification. 53C15, 53C43.
 Key words and phrases. Riemannian submersion, slant angle, harmonic map, totally geodesic.

