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NOTE ON NULL HELICES IN E3
1

Jin Ho Choi and Young Ho Kim

Abstract. In this paper, we study null helices, null slant helices and

Cartan slant helices in E3
1. Using some associated curves, we characterize

the null helices and the Cartan slant helices and construct them. Also,

we study a space-like curve with the principal normal vector field which

is a degenerate plane curve.

1. Introduction

In a Lorentzian space, there exist three families of curves which are called
space-like, time-like and null (or light-like), depending on their causal charac-
ters. It is well-known that the studies of space-like curves and time-like curves
have many analogies and similarities because they have the natural geometric
invariant parameter by the arc length parameter which normalizes the tangent
vector ([22]). However, the arc length of null curves vanishes and this fact arise
the difficulties of study of null curves. As a method of proceeding, some ge-
ometers are using the special parameter called the pseudo-arc parameter which
normalizes the derivative of the tangent vector ([11, 12]).

In a theory of general relativity, a null curve corresponds to the path of
an observer moving at the speed of light while the space-like curves faster
and the time-like curves slower than light ([22]). Many mathematical and
physical scientists who study the theories of general relativity and classical
string emphasized the importance of the null curves in recent years ([6, 9, 10,
13, 14, 15, 16, 17, 18]).

A helix in E3 (or E3
1) is defined by a curve whose curvature and torsion are

non-zero constants. A certain property of a helix that its tangent lines make a
constant angle with a fixed direction leads to the definitions of another types
of the helices, for example, the general helices, slant helices and binormal slant
helices. Naturally, many mathematicians have been studying another type of
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helices and they introduced many interesting results different from the ordinary
helices (see [1, 2, 3, 4, 5, 7, 8, 20, 21]).

In [7], the authors studied also the general helices and the slant helices in E3

by using some special associated curves of a given curve. Subsequently, they
studied the Lorentzian version in [8]. They called the special associated curve
the principal-directional (-donor) curve and the binormal-directional (-donor)
curve. These notions gave us a certain method constructing the general helices
and the slant helices (see [7, 8]).

In this paper, we study null helices, Cartan slant helices and null slant
helices by using the notions of the associated curves. Also, using the notion
of the principal-directional (-donor) curve, we characterize the null helices and
the Cartan helices in E3

1 and construct them. Finally, we give some properties
of a space-like curve with a null principal normal vector field.

2. Preliminaries

The Minkowski 3-space E3
1 is the real vector space R3 endowed with the

Lorentzian metric given by:

〈·, ·〉 = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of R3. A non-zero vector
v ∈ E3

1 is said to be space-like, time-like or null if 〈v, v〉 > 0, 〈v, v〉 < 0 or
〈v, v〉 = 0, respectively. We consider the zero vector as a space-like vector.
Two non-zero vectors u and v in E3

1 are said to be orthogonal if 〈u, v〉 = 0. A
set {e1, e2, e3} of vectors in E3

1 is called an orthonormal frame if it satisfies that

〈e1, e1〉 = −1, 〈e2, e2〉 = 〈e3, e3〉 = 1 and 〈ei, ej〉 = 0, i 6= j.

For two non-zero vectors u = (u1, u2, u3) and v = (v1, v2, v3) in E3
1, we define

the (Lorentzian) vector product of u and v as the following:

u× v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1) .

One can check that the vector product is skew-symmetric, i.e., u× v = −v×u.

A curve γ = γ(t) in E3
1 is said to be space-like, time-like or null if its tangent

vector field γ′(t) is space-like, time-like or null, respectively, for all t. A null
curve is also called a light-like curve.

Let γ be a space-like or time-like curve in E3
1 parametrized by arc-length, i.e.,

|〈γ′, γ′〉| = 1, and we suppose that 〈γ′′, γ′′〉 6= 0. Then this curve γ induces a

Frent frame {T = γ′, N = γ′′/
√
|〈γ′′, γ′′〉|, B = T ×N} satisfying the following

Frenet equations:

(2.1)

T ′N ′
B′

 =

 0 κη 0
−κε 0 −τεη

0 −τη 0

TN
B

 ,
where ε = 〈T, T 〉, η = 〈N,N〉, κ = 〈T ′, N〉 and τ = 〈N ′, B〉. The vector fields
T , N , B and the functions κ and τ are called the tangent, principal normal,
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binormal and curvature and torsion of γ, respectively. In (2.1), if ε = 1 or
ε = −1, then γ is space-like or time-like, respectively. A space-like curve γ
satisfying (2.1) is said to be type 1 or type 2 if η = 1 or η = −1, respectively.

In case that 〈γ′′, γ′′〉 = 0, if γ′′ = 0, then γ is just a space-like straight-line,
and if γ′′ 6= 0, then γ is a space-like curve with the null principal normal vector
field. In fact, a space-like curve γ in E3

1 parametrized by arc-length with null
principal normal vector field N has a unique null frame {T = γ′, N = γ′′, B}
along γ satisfying

〈N,B〉 = 1, 〈B,B〉 = 〈T,B〉 = 0

and

(2.2)

T ′N ′
B′

 =

 0 1 0
0 k 0
−1 0 −k

TN
B

 ,
where k = 〈N ′, B〉. A space-like curve in E3

1 satisfying (2.2) is said to be null
type.

Let γ = γ(t) be a non-geodesic null curve in E3
1. Then, its acceleration vector

d2γ
dt2 is space-like, i.e., 〈d

2γ
dt2 ,

d2γ
dt2 〉 > 0. Hence we can give a reparametrization

s = s(t) of γ such that 〈γ′′, γ′′〉 = 1, where γ′′(s) = d2γ
ds2 . We call s the

pseudo-arc parameter of γ. With respect to the pseudo-arc parameter s, put
A(s) = γ′(s), C(s) = A′(s). Then, it is well-known that there is a unique vector
field B(s) along γ such that {A,B,C} forms a null frame along γ satisfying
(see [10])

(2.3) A×B = −C, B × C = B and C ×A = A.

The frame {A,B,C} satisfies the null Frenet equations:

(2.4)

A′B′
C ′

 =

 0 0 1
0 0 k
−k −1 0

AB
C

 ,
where k = 〈B′, C〉. We call the null frame {A,B,C} and the function k the
Cartan frame and the light-like curvature of γ, respectively. The light-like
curvature is Lorentzian invariant and the null curves are completely determined
only by its light-like curvature up to Lorentz transformations ([11] , [19]). We
call the vector fields B and C the binormal vector field and the principal normal
vector field along γ, respectively.

Now, we define some associated curves of a given curve in E3
1.

Definition ([7]). Let γ : I → E3
1 be a null curve in E3

1 parametrized by the
pseudo-arc parameter with Cartan frame {A,B,C} and W a unit vector field
along γ . A curve γ̄ : I → E3

1 is called the W -directional curve of the curve γ
if the tangent T̄ of the curve γ̄ is equal to W , i.e., T̄ = W . A curve γ whose
W -directional curve γ̄ is called the W -donor curve of γ̄.
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Remark 2.1. For a given curve in E3
1, its W -directional and W -donor curves

are unique up to translations (For the details, see [7]).

Remark 2.2. If W = A, then the A-directional curve γ̄ of the curve γ is trivially
γ.

Remark 2.3. If W = B, then Ā = B. In this case the B-directional curve
γ̄ of the curve γ is called the binormal-directional curve of γ and the curve
γ is called the binormal-donor curve of γ̄. When a curve ¯̄γ is the binormal-
directional curve of γ̄, we call ¯̄γ the second principal-directional curve of γ and
γ the second binormal-donor curve of ¯̄γ.

Remark 2.4. If W = C, then Ā = C. In this case the C-directional curve γ̄
of the curve γ is called the principal-directional curve of γ and the curve γ is
called the principal-donor curve of γ̄.

3. Principal-directional curve of null curves and Cartan slant helix

A null helix in E3
1 is a null curve with constant light-like curvature. Equiva-

lently, a null helix γ is a null curve that there exists a vector V ∈ E3
1 such that

〈γ′, V 〉 is constant ([12], [19]).
Let {A,B,C} be the Cartan frame along a given null curve γ. By definition,

a Cartan slant helix (resp. null slant helix) in E3
1 is the one with a vector V ∈ E3

1

such that 〈C, V 〉 (resp. 〈B, V 〉) is constant.
In fact, the notions of the principal-directional curve and the principal-donor

curve are very useful to study the relationship between null helices and the
Cartan slant helices (or null slant helices) in E3

1. The following remarks explain
why.

Remark 3.1. Let γ = γ(s) be a curve in E3
1 and W = W (s) a unit vector field

along γ. If W has a constant angle with a constant vector V of E3
1 along γ,

then the tangent vector of the W -directional curve γ̄ of γ has also a constant
angle with V along γ̄. Conversely, for a curve γ̄ in E3

1, if its tangent has a
constant angle with a constant vector field V of E3

1, then its W -donor curve
γ is a curve in E3

1 satisfying the condition that W has constant angle with V
along γ̄.

Remark 3.2. In Remark 3.1, if we take the principal normal vector field C
(resp. the binormal vector field B) instead of the vector field W along γ, then
γ is a Cartan slant helix (resp. null slant helix) in E3

1. In other words, a
Cartan slant helix (resp. null slant helix) in E3

1 is a principal (resp. binormal)-
donor curve of a null helix in E3

1 and a null helix in E3
1 is a principal (resp.

binormal)-directional curve of a Cartan slant helix (resp. null slant helix) in
E3

1.

Now, we give the relationship between a null curve γ parametrized by the
pseudo-arc parameter s and its principal-directional curve γ̄ in E3

1.
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Theorem 3.3. Let γ be a null curve in E3
1 parametrized by the pseudo-arc

parameter s with the light-like curvature k 6= 0 and γ̄ the principal-directional
curve of γ. If k > 0 or k < 0, then γ̄ is a space-like curve of type 1 or type 2,
respectively. Moreover, for the curvature κ̄ and the torsion τ̄ of γ̄, it has the
following relations:

κ̄ =
√

2|k|, τ̄ = −ε k
′

2k
and

τ̄

κ̄
= ε

(
1√
2|k|

)′
,

where ε is 1 or −1 if k > 0 or k < 0, respectively.

Proof. Since γ̄ is the principal-directional curve of γ, γ̄′ = T̄ = C. We note that
the parameter s is the arc-length parameter along γ̄, i.e., s̄ = s. Differentiation
of T̄ along the curve γ̄ leads to

dT̄

ds̄
=
dC

ds̄
=
dC

ds
= −kA−B.

Since 〈dT̄ds̄ ,
dT̄
ds̄ 〉 = 2k, the type of the space-like curve γ̄ depends on the sign of

the light-like curvature of γ. The curvature κ̄ of γ̄ and the principal normal
vector field N̄ along γ̄ are easily derived as

(3.1) κ̄ =
√

2|k| and N̄ =
1√
2|k|
{−kA−B},

respectively. Since T̄ = C, from equation (3.1), we can find the binormal vector
field B̄ along γ̄:

B̄ = −ε
(
T̄ × N̄

)
=

ε√
2|k|

C × (kA+B)

=
ε√
2|k|
{kA−B} ,

(3.2)

where ε is the sign of k. By the direct calculation, we have

dB̄

ds̄
= ε

{
k′

2k
√

2|k|
(kA+B)

}
.

Thus, we get the torsion τ̄ of γ̄ which is given by

τ̄ = −ε k
′

2k
.

Therefore, we have

τ̄

κ̄
= − εk′

2k
√

2|k|
= ε

(
1√
2|k|

)′
.

Thus, our proof is completed. �

For a given null curve in E3
1 parametrized by the pseudo-arc parameter s, we

showed that its principal-directional curve is always a space-like Frenet curve.
But, the converse is not true. In other words, a principal-donor curve of a
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space-like Frenet curve in E3
1 need not be a null curve parametrized by the

pseudo-arc parameter. In fact, from Theorem 3.3, we get the following:

Corollary 3.4. Let γ̄ be a space-like curve in E3
1 with the non-zero curvature

κ̄ and the torsion τ̄ and {T̄ , N̄ , B̄} the Frent frame of γ̄. Then, a principal-
donor curve γ of γ̄ is a null curve parametrized by pseudo-arc parameter if and

only if κ̄ and τ̄ satisfy τ̄
κ̄ = ε

(
1
κ̄

)′
, where ε = 〈N̄ , N̄〉. Moreover, the light-like

curvature of γ is given by k(s) = ε κ̄
2

2 .

Proof. If a principal-donor curve γ is a null curve parametrized by pseudo-arc
parameter, it is clear from Theorem 3.3. Conversely, assume that the curve γ̄

satisfies τ̄
κ̄ = ε

(
1
κ̄

)′
for ε = 〈N̄ , N̄〉. From equations (3.1) and (3.2), a principal-

donor curve γ of a space-like curve γ̄ in E3
1 is constructed by

(3.3) γ′ = A =
1

κ̄

{
−εN̄ + B̄

}
,

where ε = 〈N̄ , N̄〉 = −〈B̄, B̄〉. Trivially, the curve γ is null. Differentiating
(3.3), we have

C = γ′′ =

(
1

κ̄

)′ {
−εN̄ + B̄

}
+

1

κ̄

{
κ̄T̄ − ετ̄ B̄ + τ̄ N̄

}
= T̄ +

(
τ̄

κ̄
− ε
(

1

κ̄

)′)
N̄ +

((
1

κ̄

)′
− ε τ̄

κ̄

)
B̄ = T̄ .

From equation (3.3), the principal vector field B along γ could be given by (cf.
[10], page 10)

B =
1

g(A, B̄)

{
B̄ − g(B̄, B̄)

2g(A, B̄)
A

}
= −εκ̄

{
B̄ − 1

2

(
−εN̄ + B̄

)}
= −ε κ̄

2

{
B̄ + εN̄

}
,

from which, together with τ̄
κ̄ = ε

(
1
κ̄

)′
, we get

B′ = ε
κ̄2

2
T̄ ,

Therefore, we have k(s) = ε κ̄
2

2 . �

This leads to a characterization of null helices in E3
1 as follows:

Corollary 3.5. A null curve in E3
1 parametrized by the pseudo-arc param-

eter s with the light-like curvature k 6= 0 is a null helix if and only if its
principal-directional curve γ̄ is a plane curve of the constant curvature. More-
over, depending on κ > 0 or κ < 0, γ̄ is a space-like circle in E2 or a space-like
hyperbola in E2

1, respectively.
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Together with Corollary 3.5, equation (3.3) gives an expression of the general
helices in E3

1.

Corollary 3.6 ([12]). Let γ be a null general helix in E3
1 with the light-like

curvature k 6= 0.
(a) If k is positive, then γ can be expressed by

(3.4) γ(s) =
1

2k

(
−
√

2ks, sin
[√

2ks
]
,− cos

[√
2ks
])
.

(b) If k is negative, then γ can be expressed by

(3.5) γ(s) =
1

2k

(
sinh

[√
−2ks

]
, cosh

[√
−2ks

]
,
√
−2ks

)
.

Proof. Let γ̄ be a space-like circle in E2 with the constant curvature κ̄ as a
principal-directional curve of the given curve γ. Then, γ̄ can be expressed by

(3.6) γ̄(s) =
1

κ̄
(0, cos[κ̄s], sin[κ̄s]) ,

from which, we have the Frenet frame {T̄ , N̄ , B̄} along γ̄ as follows:

(3.7)


T̄ (s) = (0,− sin[κ̄s], cos[κ̄s]) ,

N̄(s) = (0,− cos[κ̄s],− sin[κ̄s]) ,

B̄(s) = (−1, 0, 0).

From equation (3.3), we have

γ′(s) =
1

κ̄

{
−N̄ + B̄

}
=

1

κ̄

(
−1, cos[κ̄s], sin[κ̄s]

])
=

1√
2k

(
−1, cos[

√
2ks], sin[

√
2ks]

)
,

where the last equality come from (3.1). Since k is a constant, we get the first
expression (3.4). The proof of (b) is similar to (a). �

Remark 3.7. In Corollary 3.4, if the curve γ̄ is a general helix with τ̄ = mκ̄,
then the curvature function κ̄ is equal to 1

ms+b . Also, the light-like curvature

k of γ is given by k(s) = ε
2(ms+b)2

.

From Remark 3.7, we can give a characterization of Cartan slant helix in
E3

1.

Theorem 3.8. Let γ is a null curve in E3
1 parametrized by the pseudo-arc

parameter s. Then, the followings are equivalent:

(a) γ is a Cartan slant helix in E3
1.

(b) γ has the light-like curvature ± 1
(cs+b)2

, where c 6= 0 and b are constants.

(c) The principal-directional curve γ̄ of γ is a space-like general helix γ̄
with κ̄(s) = 1

ms+a and τ̄(s) = m
ms+a , where m = c√

2
and a = b√

2
.
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(d) γ is the principal-donor curve of a space-like general helix γ̄ with κ̄(s) =
1

ms+a and τ̄(s) = m
ms+a , where m = c√

2
and a = b√

2
.

Finally, motivated by Theorem 3.8(d), we can construct a Cartan slant helix
in E3

1 from a space-like general helix. To do this, we need the following two
lemmas:

Lemma 3.9 ([8]). Let γ be a space-like general helix γ of type 1 in E3
1 satisfying

τ = mκ.
(a) If

∣∣ τ
κ

∣∣ = |m| < 1, then γ can be locally expressed by
(3.8)

γ(s)=
1√

1−m2

∫ (
m, sin

[√
1−m2

∫
κ(s)ds

]
,− cos

[√
1−m2

∫
κ(s)ds

])
ds.

(b) If
∣∣ τ
κ

∣∣ = |m| > 1, then γ can be locally expressed by
(3.9)

γ(s)=
−1√
m2−1

∫ (
cosh

[√
m2−1

∫
κ(s)ds

]
, sinh

[√
m2−1

∫
κ(s)ds

]
,m
)
ds.

Lemma 3.10 ([8]). A space-like generalized helix γ of type 2 in E3
1 satisfying

τ = mκ is locally expressed by
(3.10)

γ(s)=
1√

1+m2

∫ (
sinh

[√
1+m2

∫
κ(s)ds

]
, cosh

[√
1+m2

∫
κ(s)ds

]
,m
)
ds.

From Lemmas 3.9 and 3.10, we know that there are three different types of
Cartan slant helices in E3

1.
Now, we can construct the Cartan slant helices from (3.8), (3.9) and (3.10),

respectively.

Theorem 3.11. Let γ be a Cartan slant helix γ with the light-like curvature
k(s) = ε

(cs+b)2 (ε = ±1).

(a) If ε = 1 and |c| <
√

2, then γ(s) = (x1(s), y1(s), z1(s)) can be expressed
by

x1(s) =− s(cs+ 2b)

2
√

2− c2
,

y1(s) =− (cs+ b)2

√
2
√

2− c2(2 + 3c2)

(
c
√

2− c2 cos
[√2− c2

c
ln (cs+ b)

]
+(2 + c2) sin

[√2− c2
c

ln (cs+ b)
])

,

z1(s) = − (cs+ b)2

√
2
√

2− c2(2 + 3c2)

(
c
√

2− c2 sin
[√2− c2

c
ln (cs+ b)

]
−(2 + c2) cos

[√2− c2
c

ln (cs+ b)
])

.
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(b) If ε = 1 and |c| >
√

2, then γ(s) = (x2(s), y2(s), z2(s)) can be expressed
by

x2(s) =
(cs+ b)2

√
2
√
c2 − 2(2 + 3c2)

(
(c2 + 2) cosh

[√c2 − 2

c
ln (cs+ b)

]
+c
√
c2 − 2 sinh

[√c2 − 2

c
ln (cs+ b)

])
,

y2(s) =
(cs+ b)2

√
2
√
c2 − 2(2 + 3c2)

(
(c2 + 2) sinh

[√c2 − 2

c
ln (cs+ b)

]
+c
√
c2 − 2 cosh

[√c2 − 2

c
ln (cs+ b)

])
,

z2(s) =
s(cs+ 2b)

2
√
c2 − 2

.

(c) If ε = −1, then γ(s) = (x3(s), y3(s), z3(s)) can be expressed by

x3(s) =
(cs+ b)2

√
2
√
c2 + 2(3c2 − 2)

(
(c2 − 2) sinh

[√c2 + 2

c
ln (cs+ b)

]
+c
√
c2 + 2 cosh

[√c2 + 2

c
ln (cs+ b)

])
,

y3(s) =
(cs+ b)2

√
2
√
c2 + 2(3c2 − 2)

(
(c2 − 2) cosh

[√c2 + 2

c
ln (cs+ b)

]
+c
√
c2 + 2 sinh

[√c2 + 2

c
ln (cs+ b)

])
,

z3(s) = − s(cs+ 2b)

2
√
c2 + 2

.

Proof. (a) Since k > 0, from Theorem 3.3, its principal-directional curve γ̄ is
a space-like curve of type 1. Also, from Theorem 3.8, we know that γ̄ has

the curvature κ̄ =
√

2
cs+b and the torsion τ̄ = c

cs+b . Since |c| <
√

2, we have∣∣ τ̄
κ̄

∣∣ =
∣∣∣ c√

2

∣∣∣ < 1 and γ̄ is expressed by (3.8) from Lemma 3.9(a). By the direct

calculation, we get the Frenet frame {T̄ , N̄ , B̄} along γ̄ given by
T̄ (s) =

√
2√

2−c2

(
c√
2
, sin

[√
2−c2
c ln (cs+ b)

]
,− cos

[√
2−c2
c ln (cs+ b)

])
,

N̄(s) =
(
0, cos

[√
2−c2
c ln (cs+ b)

]
, sin

[√
2−c2
c ln (cs+ b)

])
,

B̄(s) = −1√
2−c2

(√
2, c sin

[√
2−c2
c ln (cs+ b)

]
,−c cos

[√
2−c2
c ln (cs+ b)

])
.



894 JIN HO CHOI AND YOUNG HO KIM

With this, equation (3.3) implies

γ′(s) =
1

κ̄

{
−N̄ + B̄

}
= − cs+ b√

2

( √
2√

2− c2
,

cos
[√2− c2

c
ln (cs+ b)

]
+

c√
2− c2

sin
[√2− c2

c
ln (cs+ b)

]
,

sin
[√2− c2

c
ln (cs+ b)

]
− c√

2− c2
cos
[√2− c2

c
ln (cs+ b)

])
.

One can check that∫
(cs+ b) sin

[√2− c2
c

ln (cs+ b)
]

=
(cs+ b)2

3c2 + 2

(
2c sin

[√2− c2
c

ln (cs+ b)
]
−
√

2− c2 cos
[√2− c2

c
ln (cs+ b)

])
and∫

(cs+ b) cos
[√2− c2

c
ln (cs+ b)

]
=

(cs+ b)2

3c2 + 2

(
2c cos

[√2− c2
c

ln (cs+ b)
]
+
√

2− c2 sin
[√2− c2

c
ln (cs+ b)

])
.

Thus, (a) is obtained.
Similarly, (b) and (c) are obtained. �

4. Binormal-directional curve of null curves and null slant helices

In §2, we defined a null slant helix in E3
1 as another type of a helix. However,

it is well-known that the null helix and the null slant helix make no difference
([12]). At the end of this section, we prove this fact as a corollary of our
theorem.

The following theorem gives a relationship between a null curve and its null
binormal-directional curve γ̄ in E3

1. Note that the parameter s of γ need not
be the pseudo-arc parameter of γ̄.

Theorem 4.1. Let γ be a null curve in E3
1 parametrized by the pseudo-arc

parameter s with the non-zero light-like curvature k and γ̄ its null binormal-
directional curve with the light-like curvature k̄. Then, it satisfies that

k̄ =
1

k
.



NOTE ON NULL HELICES 895

Proof. Let {A,B,C} be a Cartan frame of a null curve γ parametrized by
pseudo-arc parameter s and {Ā, B̄, C̄} a Cartan frame of the null binormal-
directional curve γ̄ of pseudo-arc parameter s̄ in E3

1. This means that two
curves γ and γ̄ have the null Frenet equations:

(4.1)
dA

ds
(s) = C(s),

dB

ds
(s) = k(s)C(s),

dC

ds
(s) = −k(s)A(s)−B(s)

and

(4.2)
dĀ

ds̄
(s̄) = C̄(s̄),

dB̄

ds̄
(s̄) = k̄(s̄)C̄(s̄),

dC̄

ds̄
(s̄) = −k̄(s̄)Ā(s̄)− B̄(s̄).

From our assumption, we have Ā(s̄(s)) = B(s). Then, by (4.1) and (4.2), we
have

C̄(s̄) =
dĀ

ds̄
=
dB

ds̄
=
ds

ds̄

dB

ds
=
ds

ds̄
· (k(s)C(s)).

Since C̄ and C are unit space-like vectors in E3
1, we get that k(s) = ±ds̄/ds

and C̄(s̄(s)) = ±C(s). The derivative of C̄ with respect to s̄ leads to

(4.3) −k̄Ā− B̄ =
dC̄

ds̄
= ε

dC

ds̄
= ε

ds

ds̄

dC

ds
=

1

k
{−kA−B} = −A− 1

k
B,

where ε = −1 or 1. Since Ā = B, we get from (4.3) that(
1

k
− k̄
)
B +A = B̄.

Thus, we have k̄ = 1/k. �

Corollary 4.2 ([20]). A null curve γ in E3
1 is a null slant helix if and only if

γ is a null helix.

5. Space-like curves of null type

For a non-null curve γ in E3
1, γ is a general helix, slant helix or binormal

slant helix if there exists a non-zero vector V ∈ E3
1 such that 〈T, V 〉, 〈N,V 〉

or 〈B, V 〉 is constant, respectively, where {T,N,B} is the Frenet frame of γ.
In case of non-null curve with the non-null principal normal vector field, it is
easily seen that plane curves are general helices, slant helices and binormal
slant helices. In fact, the binormal vector field B along γ is constant and we
see 〈T,B〉 = 〈N,B〉 = 0 and 〈B,B〉 = 1.

In this section, we will show that a space-like curve of null type is a degen-
erate plane curve, but the curve need not be a binormal slant helix.

Remark 5.1. Any curve in a degenerate plane of E3
1 is either a space-like curve

of null type or a null straight-line.
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Let γ be a space-like curve of null type in E3
1 and {T,N,B} the Frenet

frame satisfying (2.2) along γ. Since N ′(s) = k(s)N(s), the null principal
normal vector field N along γ is given by

N(s) = exp

(∫
k(s)ds

)
b,

where b is a null vector in E3
1. Since γ′′(s) = T ′(s) = N(s), the curve γ can be

expressed by

(5.1) γ(s) =

∫ (∫
exp

(∫
k(s)ds

)
ds

)
dsb + sc,

where c is a unit space-like vector orthogonal to b. In other words, γ lies on
a degenerate plane spanned by b and c. We remark that 〈T,b〉 = 〈N,b〉 =
〈N, c〉 = 0 and 〈T, c〉 = 1, i.e., γ is a general helix and a slant helix.

Example 1. If k = 0, then the principal normal vector field N along γ is
constant and hence we have

(5.2) γ(s) =
s2

2
N + sc,

where c is a unit space-like vector orthogonal to N .
By putting N = (1, 1, 0) and c = (0, 0, 1) and using the method of Duggal

with (−1, 0, s) ([10]), we have the Frenet frame satisfying (2.2) as follows:

T (s) = (s, s, 1), N = (1, 1, 0) and B =

(
−1 + s2

2
,

1− s2

2
, s

)
.

Note that 〈T,N〉, 〈N,N〉, 〈N, c〉 and 〈T, c〉 are constant, but 〈B,N〉 and
〈B, c〉 are not constant. This arouses our curiosity whether the curve γ is a
binormal slant helix or not.

Now, for a space-like curve γ of null type, we find a constant vector V
satisfying 〈B, V 〉 is constant, say aN . Consider a non-zero vector field V along
γ as follows:

(5.3) V (s) = aT (s)T (s) + aNN(s) + aB(s)B(s).

Differentiating (5.3), it follows that V is a constant vector if and only if

(5.4)


a′T (s) = aB(s),

aT (s) = −k(s)aN ,

a′B(s) = k(s)aB(s).

If aN = 0, then aT = aB = 0, i.e., V is zero vector, a contradiction.
Therefore, aN 6= 0. From (5.4), if k = 0, then V is zero vector which is also a
contradiction. Thus, k(s) 6= 0.

By solving the ODE

(5.5) aNk
′(s) + c exp

(∫
k(s)ds

)
= 0
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Fig 1. Degenerate plane curves of (5.9) with a = 1 and b = 1

for a non-zero constant c, we can find a constant vector V along γ satisfying

(5.6) aT (s) = −k(s)aN and aB(s) = c exp(

∫
k(s)ds).

Thus, γ is a binormal slant helix if and only if (5.5) is satisfied.
Consequently, we have:

Theorem 5.2. A space-like curve γ of null type in E3
1 is a binormal slant helix

if and only if the curvature function k of γ is a solution of (5.5).

Corollary 5.3. A space-like curve γ of null type in E3
1 with constant curvature

k is not binormal slant helix.

Example 2. Assume that k′(s) 6= 0. Put K(s) = exp(
∫
k(s)ds). If c/aN > 0,

then we have a solution K(s) of (5.5) given by

(5.7) K(s) = sech2 (bs) ,

where b =

√∣∣∣ c
2aN

∣∣∣, from which, we have a solution k(s) of (5.5) given by

(5.8) k(s) = −2b tanh (bs) .

By putting b = (1, 1, 0) and c = (a, a, 1), from (5.1) we have a binormal
slant helix γ as follows:

(5.9) γ(s) =

(
1

b2
ln cosh(bs) + as,

1

b2
ln cosh(bs) + as, s

)
.

For this curve γ, from (5.6) we can give a constant vector V as follows:

V =
1

2b2
(
1− b2 − a2b2, 1 + b2 − a2b2,−2ab2

)
.
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Corollary 5.4. A null curve in E3
1 parametrized by the pseudo-arc parameter

is the same as its null binormal-directional curve up to Lorenzian translation
if and only if its light-like curvature equals 1 or −1.
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