Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163, Birkhauser, Basel, 1998.
- W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1975.
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser, Boston, Basel and Stuttgart, 1985.
- E. Kahler, Mathematische Werke/Mathematical Works, Edited by R. Berndt and O. Riemenschneider, Walter de Gruyter, Berlin-New York, 2003.
- J. Kramer, A geometrical approach to the theory of Jacobi forms, Compositio Math. 79 (1991), no. 1, 1-19.
- J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions, J. Reine Angew. Math. 458 (1995), 157-182.
- B. Runge, Theta functions and Siegel-Jacobi forms, Acta Math. 175 (1995), no. 2, 165-196. https://doi.org/10.1007/BF02393304
- M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Berkeley, Vol. II, 1979.
- J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146. https://doi.org/10.1007/BF02941338
- J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049. https://doi.org/10.1090/S0002-9947-1995-1290733-2
- J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. Math. 47 (1995), no. 6, 1329-1339. https://doi.org/10.4153/CJM-1995-068-2
- J.-H. Yang, The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272.
- J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102. https://doi.org/10.1016/j.jnt.2006.12.014
- J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794. https://doi.org/10.4134/JKMS.2008.45.3.781
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Ann. Math. Ser. B 31 (2010), no. 1, 85-100. https://doi.org/10.1007/s11401-008-0348-7
- J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, arXiv:1107.0509 v1 [math.NT] 4 July 2011.
- C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. https://doi.org/10.1007/BF02942329
Cited by
- COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION vol.52, pp.2, 2015, https://doi.org/10.4134/BKMS.2015.52.2.627
- THETA SUMS OF HIGHER INDEX vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b160009
- Coherent states and geometry on the Siegel–Jacobi disk vol.11, pp.04, 2014, https://doi.org/10.1142/S0219887814500352
- Gaussian distributions, Jacobi group, and Siegel-Jacobi space vol.55, pp.12, 2014, https://doi.org/10.1063/1.4903182