DOI QR코드

DOI QR Code

SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE

  • Yang, Jae-Hyun (Department of Mathematics Inha University) ;
  • Yong, Young-Hoon (Graduate School of Mathematics Education Inha University) ;
  • Huh, Su-Na (Graduate School of Mathematics Education Inha University) ;
  • Shin, Jung-Hee (Graduate School of Mathematics Education Inha University) ;
  • Min, Gil-Hong (Graduate School of Mathematics Education Inha University)
  • Received : 2012.02.23
  • Published : 2013.05.31

Abstract

In this paper, we compute the sectional curvatures and the scalar curvature of the Siegel-Jacobi space $\mathb{H}_1{\times}\mathb{C}$ of degree 1 and index 1 explicitly.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163, Birkhauser, Basel, 1998.
  2. W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1975.
  3. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhauser, Boston, Basel and Stuttgart, 1985.
  4. E. Kahler, Mathematische Werke/Mathematical Works, Edited by R. Berndt and O. Riemenschneider, Walter de Gruyter, Berlin-New York, 2003.
  5. J. Kramer, A geometrical approach to the theory of Jacobi forms, Compositio Math. 79 (1991), no. 1, 1-19.
  6. J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions, J. Reine Angew. Math. 458 (1995), 157-182.
  7. B. Runge, Theta functions and Siegel-Jacobi forms, Acta Math. 175 (1995), no. 2, 165-196. https://doi.org/10.1007/BF02393304
  8. M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Berkeley, Vol. II, 1979.
  9. J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146. https://doi.org/10.1007/BF02941338
  10. J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049. https://doi.org/10.1090/S0002-9947-1995-1290733-2
  11. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. Math. 47 (1995), no. 6, 1329-1339. https://doi.org/10.4153/CJM-1995-068-2
  12. J.-H. Yang, The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272.
  13. J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.
  14. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102. https://doi.org/10.1016/j.jnt.2006.12.014
  15. J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794. https://doi.org/10.4134/JKMS.2008.45.3.781
  16. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Ann. Math. Ser. B 31 (2010), no. 1, 85-100. https://doi.org/10.1007/s11401-008-0348-7
  17. J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, arXiv:1107.0509 v1 [math.NT] 4 July 2011.
  18. C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. https://doi.org/10.1007/BF02942329

Cited by

  1. COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION vol.52, pp.2, 2015, https://doi.org/10.4134/BKMS.2015.52.2.627
  2. THETA SUMS OF HIGHER INDEX vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b160009
  3. Coherent states and geometry on the Siegel–Jacobi disk vol.11, pp.04, 2014, https://doi.org/10.1142/S0219887814500352
  4. Gaussian distributions, Jacobi group, and Siegel-Jacobi space vol.55, pp.12, 2014, https://doi.org/10.1063/1.4903182