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ON DISCRETENESS OF MOBIUS GROUPS

X1 Fu

ABSTRACT. It’s known that one could use a fixed loxodromic or para-
bolic element in M(R") as a test map to test the discreteness of a non-
elementary M6bius group G. In this paper, we discuss the discreteness of
G by using a fixed elliptic element.

1. Introduction

The discreteness of Mobius groups is an old and interesting problem which
has been studied by many authors. For instance, in [4], Jgrgensen obtained
a useful necessary condition for two-generator Mébius groups of PSL(2,C),
which is known as Jgrgensen’s inequality. As an application, he established the
following discreteness criterion in [5].

Theorem J. A non-elementary subgroup G of PSL(2,C) is discrete if and
only if every two-generator subgroup in G is discrete.

This implies that the discreteness of a non-elementary Mobius group G de-
pends on the discreteness of its two-generator subgroups. There are many
further discussions in this direction (see [6], [8], [11]). In 2001, Wang and Yang
[12] generalized Theorem J to the case of M(R") and proved the following.

Theorem WY. Let G ¢ M(R") be non-elementary. Then G is discrete if
and only if WY (G) is discrete and each non-elementary subgroup generated by
two loxodromic elements in G is discrete.

Here,
WY (G)={g € G : g fixes every fixed point of each loxodromic element of G}.

Obviously, if G € PSL(2,C) is non-elementary, then WY (G) = {I}. Accord-
ing to [12], we know that the condition “WY(G) is discrete” in Theorem WY
is necessary when n > 3.
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In [10], Wang, Li and Cao obtained further generalizations of Theorem WY.
By using a fixed loxodromic or parabolic element in G, they proved the following
theorems.

Theorem W ([10, Theorem 3.1]). Let G € M(R") be non-elementary. Then
G is discrete if and only if WY (G) is discrete and each non-elementary sub-
group generated by two elements of Gy is discrete, where f € G is lovodromic.

Theorem Wy ([10, Theorem 3.2]). Let G ¢ M(R") be non-elementary con-
taining parabolic elements. Then G is discrete if and only if WY (G) is discrete
and each non-elementary subgroup generated by two elements of G ¢ is discrete,
where f € G is parabolic.

Here Gy in Theorems W and W» are defined as follows:
Gy ={g € G: gis conjugate to f and (f,g) is non-elementary} U {f}.
The novelty of Theorems W7 and W5 is that the discreteness of G is totally

determined by a loxodromic (resp. parabolic) element of G.

In [7], Li and the author showed that the assumption “f € G ” in Theorems
Wy and Wy was unnecessary and obtained the following theorems.

Theorem LF; ([7, Theorem 1.1)). Let G € M(R") be a non-elementary group
and f € M(R") lozodromic. If WY (G) is discrete and each non-elementary
group (f,gfg~") is discrete, where g € G, then G is discrete.

Theorem LF; ([7, Theorem 1.2)). Let G € M(R") be a non-elementary group
and f € M(R") parabolic. If WY (G) is discrete and each non-elementary
group {f,gfg™?t) is discrete, where g € G, then G is discrete.

Naturally, we asked the following question.

Conjecture LF ([7]). Let G ¢ M(R") be a non-elementary group and f €

M(Rn) elliptic. If WY (G) is discrete, and each non-elementary group
(f,9f9™")

is discrete, where g € G, then G is discrete.

We constructed an example in [7] which showed that if f|y () = I, then
Conjecture LF may not be true.

Example LF ([7]). Let Go ¢ M (EQ) be a non-elementary and non-discrete
group containing no elliptic elements, and let G be the Poincaré extension of
Gy in R'. Let f be a rotation around R’ of order p (p > 3). Then f is an
elliptic element acting on R" whose fixed point set is R’ Obviously, f ¢ G,

WY (G) = (I) is finite but there exists no non-elementary group generated by
fand gfg~! for g € G.

In this paper, we discuss Conjecture LF further and some new discreteness
criteria of Mobius groups are obtained.
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2. Preliminaries

For n > 2, we denote by R" the one-point compactification of R™ obtained
by adding oco. The group of orientation-preserving Mobius transformations
of R” is denoted by M (@n) We regard R" as the boundary at infinity of the
hyperbolic (n+1)-space H"*! and let A" = H*+1UR". It’s known that every
Mobius transformation f in R" can be extended to an isometry f (Poincaré
extension) in H"*!.

For a non-trivial element f € M(R"), we let

. —n-+1
fiz(f)={zeH  : f(z) ==}
f is called loxodromic if it has two fixed points in R" and none in H"*L, parabolic

if it has only one fixed point in R" and none in H"*!, and elliptic if it has a
fixed point in H"t!.

Let G be a subgroup of M(R"). For a point z € ﬁnﬂ, the set G(z) =
{9(2) : g € G} is called G-orbit of z. The limit set L(G) of G is defined as
follows: L

L(G) =G(z)nR".
We call G elementary if L(G) contains fewer than three points. Otherwise, it
is called non-elementary.

Proposition 2.1 ([10]). Let G ¢ M(R"). Then we have the following
(1) if G contains a loxodromic element, then G is elementary if and only
if it fizes a point in R" ora point-pair {x,y} C En;
(2) if G contains a parabolic element but no loxodromic element, then G is
elementary if and only if it fizes a point in R";
(3) if G is purely elliptic, then G fizes a point in "
Let G ¢ M(R") be non-elementary. We denote M(G) the smallest G-

invariant hyperbolic subspace of H" "1, ¢(g) the restriction of g to M(G) for
all g € G, that is

?(9) = 9lm@), #(G) ={9lm@c) :9€ G}
Obviously,
WY(G) ={g€G:dlg) =1}
If there exists a sequence of distinct elements in G converging to the identity,
then we say that G is not discrete. Otherwise, we say that G is discrete.

Proposition 2.2 ([9]). Let G ¢ M(R") be non-elementary. Then G is discrete
if and only if both groups WY (G) and ¢(G) are discrete.
For f. = (¢ Z:) e M(R") (r =1,2), we define

If1r = fall = (Jar — a2l + b1 — ba|? + |e1 — c2f? + |dy — da?)%.

The following lemma is crucial for our investigation.
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Lemma 2.1 ([13)). Let f, g € M(R"). If (f,g) is a discrete and non-
elementary group, then

1
—I| g =1 > —.
1F =1l - llg = 11 > 53

In the following, we give an example which shows that in some special case,
Conjecture LF may be true.

Proposition 2.3. Let G C M(@E)) be non-elementary with M(G) = H°, and
let f be an elliptic element of M(EE)) such that f? has only one fized point in

=5
H® and none in R". If each non-elementary group {f,gfg~') is discrete, where
g € G, then G 1is discrete.

Proof. Suppose not. Since G C M (EE)) is non-elementary with M (G) = HS, by

[3], we know that G is dense in M (R"). It follows that there exists a sequence
{fi} C G such that for each i, f; is loxodromic and

fi— 1T as i — oo.

By our assumptions and Lemma 2.1, it’s easy to see that for large enough ¢,
(f%, fif2f; 1) are elementary. It deduces that

filfix(f?)) = fiz(f?).
It’s the desired contradiction since f2 has only one fixed point in HP. O

Motivated by Example LF and Proposition 2.3, we obtain the following main
results.

Theorem 2.1. Let G € M(R") be non-elementary and f € M(R") be elliptic
with Card|fiz(f?)] = 1. If WY (G) is discrete, and each non-elementary group
(f,gfg™1) is discrete, where g € G, then G is discrete.

Theorem 2.2. Let G C M(R") be non-elementary and f € M(R") be elliptic
with f2|aqy # 1. If WY (G) is discrete, and each non-elementary group (f, g)
is discrete, where g € G, then G is discrete.

Remark 2.1. Following [3], if f € M(R") be elliptic with Card[fiz(f)] = 1,
then n must be odd.
3. Proofs of main results
3.1. Proof of Theorem 2.1
Suppose not. Then there exists a sequence {f;} C G such that
fi— 1 as i — oo.

Since Card[fiz(f2)] = 1, we can see that f2 has no fixed point in R (that is
12 has only one fixed point in H"*1). Without loss of generality, we assume
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that fiz(f?) = {z}, where z € H"™!. Then for large enough 4, we know that
the subgroups (f?, f;f2f;"!) are elementary since

1
- -1
12 =1l -2 5207 = 1) < 55

By Proposition 2.1, we know that for large enough i, z € fixz(f;). Since G
is non-elementary, we can find finitely many loxodromic elements g1, g2, ..., g:
in G such that the set S = {Afiz(g,), Afia(g)s - - > Afia(ge)} can spans M(G),
where A, (4) denote the attractive fixed point of a loxodromic element g. For

each k, let UAjinion) be a small neighborhood of Ay, (g, ) in ﬁn—H, where (k =
1,2,...,t) (cf. [7]). Then we can find an integer N such that for each k, g} (x) €
UAyivy,,- Now, let’s consider the subgroups (gN f2g7 N, fig,fvag;Nf[1>. Since

" o™ figl Par NI = o (P N gl e N T e g Y
and
(oM g o N 17 e ) = (g N gl Pac N 1 e 1),
by the assumptions and Lemma 2.1, we know that the groups
(9 o™ gl Poc NI
are elementary for large enough i. It easily follows that for each k and large

enough i, f; has a fixed point in UAfm(gk). This means that for large enough i,
fi € WY(G). It’s a contradiction.

3.2. Proof of Theorem 2.2

Suppose that G is not discrete. Then there exists a sequence {f;} C G such
that for each 4,
fi—=1 as i— oo.

It follows a discussion similar to that in the proof of Theorem 2.1, we can
find finitely many loxodromic elements g1, gs2,...,¢: in G such that the set
S = {Afiz(g1)> Atic(ga)> - - » Afiz(ge)} can span M(G) and an integer N such
that for each k, g (fiz(f)) € UAjiny,y (F=1,2,...,t). Since

G P ™ ) = ot (f2 9. N figl Do N
and )
o ™ figi = 11| [1£2 = 1] < 55

for large enough i, we can see that the subgroups (g f QQ;N , fi) are elementary.
By Proposition 2.1, we know that for each k (k =1,2,...,t),

f’L.T(fz) N UAfia:(gk) £ (.
It follows that for sufficiently large ¢,
fi e WY(G).
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It’s a contradiction.

4. A discreteness criterion for isometric subgroups of PU(n,1)

It’s similar to Mdbius groups, in [6], Li obtained the following discreteness
criteria for subgroups of PU(n,1).

Theorem L ([6, Theorem 1.3]). Let G C PU(n,1) be non-elementary and
M(G) = H. Suppose that f € G is elliptic with order at least 3. Then G
is discrete if and only if each non-elementary subgroup generated by f and an
elliptic of G is discrete.

By [3], we know that if M(G) = HE, then G is either discrete or dense. Since
dim(M (Q)) is even, it follows from a discussion similar to that in the proof of
[2, Theorem 1.2], we have:

Theorem 4.1. Let G C PU(n,1) be non-elementary and M(G) = H¢. Then
G is discrete if and only if each group gemerated by an elliptic element of G is
discrete.
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