J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2013.20.2.103 Volume 20, Number 2 (May 2013), Pages 103–108

WALLMAN COVERS AND QUASI-F COVERS

Chang Il Kim^a and Chang Hyeob Shin^{b,*}

ABSTRACT. Observing that for any space X, there is a Wallman sublattice \mathscr{A}_X and that QFX is homeomorphic to a subspace X_q of the Wallman cover $\mathscr{L}(\mathscr{A}_X)$ of \mathscr{A}_X , we show that βQFX and $\mathscr{L}(\mathscr{A}_X)$ are homeomorphic.

1. INTRODUCTION

All spaces in this paper are assumed to be Tychonoff spaces and $(\beta X, \beta_X)$ denotes the Stone-Čech compactification of a space X.

Iliadis constructed the absolute of a Hausdorff, which is the minimal extremally disconnected cover and they turn out to be the perfect onto projective covers ([6]). To generalize extremally disconnected spaces, basically disconnected spaces, quasi-F spaces and cloz-spaces have been introduced and their minimal covers have been studied by various authors ([1], [3], [4], [5], [7], [8], [9]).

In particular, Henriksen and Gillman introduced the concept of quasi-F spaces which is a generalization of F-spaces, in which every cozero-set is C^* -embedded. Each space X has the minimal quasi-F cover (QFX, Φ_X) ([3]).

Henriksen, Vermeer and Woods introduced the concept of Wallman covers and proved that if X is a compact space, then QFX is given by the Wallman cover $\mathscr{L}(Z(X)^{\#})$ of the Wallman sublattice $Z(X)^{\#}$ and $\Phi_X(\alpha) = \cap \{A \mid A \in \alpha\}$ ($\alpha \in \mathscr{L}(Z(X)^{\#})$) ([4]).

In this paper, we introduce a new Wallman sublattice \mathscr{A}_X for a space X and show that QFX is homeomorphic to the subspace X_q of a Wallman cover $\mathscr{L}(\mathscr{A}_X)$. Using this, we will show that βQFX and $\mathscr{L}(\mathscr{A}_X)$ are homeomorphic.

For the terminology, we refer to [2] and [9].

 $\bigodot 2013$ Korean Soc. Math. Educ.

Received by the editors February 7, 2013. Revised May 7, 2013. Accepted May 11, 2013

 $^{2010\} Mathematics\ Subject\ Classification.\ 54G10,\ 54C10.$

Key words and phrases. quasi-F space, covering map.

^{*}Corresponding Author.

2. Quasi-F Covers and Wallman Covers

The set $\mathcal{R}(X)$ of all regular closed sets in a space X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows : for any $A \in \mathcal{R}(X)$ and any

 $\{A_i \mid i \in I\} \subseteq \mathcal{R}(X),$ $\lor \{A_i \mid i \in I\} = cl_X(\cup \{A_i \mid i \in I\}),$ $\land \{A_i \mid i \in I\} = cl_X(int_X(\cap \{A_i \mid i \in I\})), \text{ and }$ $A' = cl_X(X - A)$

is given by $\phi^{-1}(B) = cl_K(B)$.

and a sublattice of $\mathcal{R}(X)$ is a subset of $\mathcal{R}(X)$ that contains \emptyset , X and is closed under finite joins and meets.

Recall that a map $f: Y \longrightarrow X$ is called a *covering map* if it is a continuous, onto, perfect, and irreducible map.

Lemma 2.1 ([7]). (1) Let $f : Y \longrightarrow X$ be a covering map. Then the map ψ : $\mathcal{R}(Y) \longrightarrow \mathcal{R}(X)$, defined by $\psi(A) = A \cap X$, is a Boolean isomorphism and the inverse map ψ^{-1} of ψ is given by $\psi^{-1}(B) = cl_Y(f^{-1}(int_X(B))) = cl_Y(int_Y(f^{-1}(B)))$. (2) Let X be a dense subspace of a space K. Then the map $\phi : \mathcal{R}(K) \longrightarrow \mathcal{R}(X)$, defined by $\phi(A) = A \cap X$, is a Boolean isomorphism and the inverse map ϕ^{-1} of ϕ

Definition 2.2. A space X is called a quasi-F space if for any zero-sets A, B in X, $cl_X(int_X(A \cap B)) = cl_X(int_X(A)) \cap cl_X(int_X(B))$, equivalently, every dense cozero-set in X is C^{*}-embedded in X.

It is well-known that a space X is a quasi-F space if and only if βX is a quasi-F space.

Definition 2.3. Let X be a space. Then a pair (Y, f) is called

- (1) a cover of X if $f: X \longrightarrow Y$ is a covering map,
- (2) a quasi-F cover of X if (Y, f) is a cover of X and Y is a quasi-F space, and
- (3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X and for any quasi-F cover (Z, g) of X, there is a covering map h : Z → Y such that f ∘ h = g.

For any space X, there is a minimal quasi-F cover (QFX, Φ_X) ([4])

Definition 2.4 ([4]). Let X be a space and \mathscr{A} a sublattice of $\mathcal{R}(X)$. Then \mathscr{A} is said to be a Wallman sublattice if

104

- (1) for any $A \in \mathscr{A}$ and $x \in X A$, there is a $B \in \mathscr{A}$ such that $x \in int_X(B)$ and $A \wedge B = \emptyset$, and
- (2) for any $A, B \in \mathscr{A}$ with $A \wedge B = \emptyset$, there are C, D in \mathscr{A} such that $A \wedge C = B \wedge D = \emptyset$ and $C \vee D = X$.

Let X be a compact space and \mathscr{A} a Wallman sublattice of $\mathcal{R}(X)$ such that \mathscr{A} is a base for closed sets in X. Let $\mathscr{L}(\mathscr{A}) = \{\alpha \mid \alpha \text{ is an } \mathscr{A}\text{-ultrafilter }\}$ and for any $A \in \mathscr{A}, \sum_{\mathscr{A}}^{A} = \{\alpha \in \mathscr{L}(\mathscr{A}) \mid A \in \alpha\}$. Let $\mathscr{L}(\mathscr{A})$ be the space, equipped with the topology for which $\{\sum_{\mathscr{A}}^{A} \mid A \in \mathscr{A}\}$ is a base for closed sets and define a map $\Phi_{\mathscr{A}} : \mathscr{L}(\mathscr{A}) \longrightarrow X$ by $\Phi_{\mathscr{A}}(\alpha) = \cap\{A \mid A \in \alpha\}$. Then the pair $(\mathscr{L}(\mathscr{A}), \Phi_{\mathscr{A}})$ is called a Wallman cover of X with respect to \mathscr{A} ([4]).

For any space $X, Z(X)^{\#}$ is a Wallman sublattice of $\mathcal{R}(X)$ ([4]).

Lemma 2.5 ([4]). Let X be a compact space. Then we have the following :

- (1) for any $A, B \in \mathscr{A}, \ \sum_{\mathscr{A}}^{A} \wedge \sum_{\mathscr{A}}^{B} = \sum_{\mathscr{A}}^{A} \cap \sum_{\mathscr{A}}^{B}$
- (2) $\Phi_{\mathscr{A}} : \mathscr{L}(\mathscr{A}) \longrightarrow X$ is a covering map, and
- (3) $(\mathscr{L}(Z(X)^{\#}), \Phi_{Z(X)^{\#}})$ is a minimal quasi-F cover of X.

Let X be a space and \mathscr{A} a Wallman sublattice of $\mathcal{R}(X)$. Let $\mathscr{L}(\mathscr{A}) = \{\alpha \mid \alpha$ is a \mathscr{A} -ultrafilter $\}$ be the space which is equipped with the topology for which $\{\sum_{\mathscr{A}}^{A} \mid A \in \mathscr{A}\}$ is a base for closed sets. By Lemma 2.1, $Z(X)^{\#}$ and $Z(\beta X)^{\#}$ are isomorphic, $\mathscr{L}(Z(\beta X)^{\#})$ is homeomorphic to the space $\mathscr{L}(Z(X)^{\#})$.

For any space X, let $\mathscr{A}_X = \{ cl_X(int_X(\Phi_X(A))) \mid A \in Z(QFX)^{\#} \}$. By Lemma 2.1, \mathscr{A}_X is a Wallman sublattice of $\mathcal{R}(X)$.

For any space X, let $(QF(\beta X), \Phi_{\beta})$ be the minimal quasi-F cover of βX . Recall that a \mathscr{A} -filter α is called fixed if $\cap \{A \mid A \in \alpha\} \neq \emptyset$.

Proposition 2.6. Let X be a space. Then we have the following :

- (1) \mathscr{A}_X is a Wallman sublattice of $\mathcal{R}(X)$ with $Z(X)^{\#} \subseteq \mathscr{A}_X$, and
- (2) for any fixed \mathscr{A}_X -ultrafilter α , $\alpha_q = \{A \in Z(QFX)^{\#} \mid \Phi_X(A) \in \alpha\}$ is a fixed $Z(QFX)^{\#}$ -ultrafilter and $|\cap \{B \mid B \in \alpha_q\}| = 1$.

Proof. (1) Since $Z(QFX)^{\#}$ is a Wallman sublattice of $\mathcal{R}(QFX)$ and $\Phi_X : QFX \longrightarrow X$ is a covering map, \mathscr{A}_X is a Wallman sublattice of $\mathcal{R}(X)$. Let $A \in Z(X)^{\#}$. By Lemma 2.1, $\Phi_X(cl_{QFX}(\Phi_X^{-1}(int_X(A)))) = A$ and $cl_{QFX}(\Phi_X^{-1}(int_X(A))) \in Z(QFX)^{\#}$. Hence $A \in \mathscr{A}_X$ and so $Z(X)^{\#} \subseteq \mathscr{A}_X$.

(2) Clearly, α_q is a $Z(QFX)^{\#}$ -filter. Suppose that $A \in Z(QFX)^{\#} - \alpha_q$. By the definition of α_q , $\Phi_X(A) \notin \alpha$. Since α is a $Z(X)^{\#}$ -ultrafilter, there is a $B \in \alpha$

such that $B \wedge \Phi_X(A) = \emptyset$. By Lemma 2.1, $cl_{QFX}(\Phi_X^{-1}(int_X(B))) \wedge A = \emptyset$ and $cl_{QFX}(\Phi_X^{-1}(int_X(B))) \in Z(QFX)^{\#}$. Since $\Phi_X(cl_{QFX}(\Phi_X^{-1}(int_X(B)))) = B \in \alpha$, $cl_{QFX}(\Phi_X^{-1}(int_X(B))) \in \alpha_q$. Hence α_q is a $Z(QFX)^{\#}$ -ultrafilter.

Let $x \in \cap \{A \mid A \in \alpha\}$. Since α_q is a $Z(QFX)^{\#}$ -ultrafilter, $\{B \cap \Phi_X^{-1}(x) \mid B \in \alpha_q\}$ has the finite intersection property. Since $\Phi_X^{-1}(x)$ is compact, $\cap \{B \cap \Phi_X^{-1}(x) \mid B \in \alpha_q\} \neq \emptyset$ and $\cap \{B \mid B \in \alpha_q\} \neq \emptyset$. This implies that α_q is fixed. Since $Z(QFX)^{\#}$ is a base for closed sets in QFX, $|\cap \{B \mid B \in \alpha_q\}| = 1$.

Let X be a space and $X_q = \{ \alpha \in \mathscr{L}(\mathscr{A}_X) \mid \alpha \text{ is fixed} \}$ the subspace of $\mathscr{L}(\mathscr{A}_X)$. Define a map $g_X : X_q \longrightarrow QFX$ by $g_X(\alpha) = \cap \{B \mid B \in \alpha_q\}.$

In the following, for any $A \in \mathscr{A}_X$, let $\sum_A = \sum_{\mathscr{A}_X}^A$ and $S_A = \sum_A \cap X_q$.

Theorem 2.7. Let X be a space. Then $g_X : X_q \longrightarrow QFX$ is a homeomorphism.

Proof. First, we will show that g_X is one-to-one and onto. Let $\alpha \neq \delta$ in X_q . Then there are $C, D \in \mathscr{A}_X$ such that $C \in \alpha$, $D \in \delta$ and $C \wedge D = \emptyset$. Since $C, D \in \mathscr{A}_X$, there are $A, B \in Z(QFX)^{\#}$ such that $\Phi_X(A) = C$ and $\Phi_X(B) = D$. Then $\Phi_X(A) \wedge \Phi_X(B) = \Phi_X(A \wedge B) = \emptyset$ and by Lemma 2.1, $A \wedge B = \emptyset$. Since QFX is a quasi-F space, $A \cap B = \emptyset$. Since $\Phi_X(A) = C \in \alpha$, $A \in \alpha_q$ and $g_X(\alpha) \in A$. Similarly, $g_X(\delta) \in B$ and $g_X(\alpha) \neq g_X(\delta)$. Thus g_X is one-to-one.

Let $y \in QFX$ and $\gamma = \{\Phi_X(C) \mid y \in C \in Z(QFX)^\#\}$. Then clearly, γ is a \mathscr{A}_X -filter. Let $D \in \mathscr{A}_X - \gamma$. Then there is an $E \in \mathscr{A}_X$ such that $\Phi_X(E) = D$ and $y \notin E$. Since $Z(QFX)^\#$ is a Wallman sublattice, there is an $F \in Z(QFX)^\#$ such that $y \in int_{QF}(F)$ and $F \wedge E = \emptyset$. By Lemma 2.1, $\Phi_X(F) \wedge \Phi_X(E) = \Phi_X(F) \wedge D = \emptyset$ and since $\Phi_X(F) \in \gamma$, γ is an \mathscr{A}_X -ultrafilter. Since $h_X(\gamma_q) = y$, h_X is onto.

Let $E \in Z(QFX)^{\#}$ and $\mu \in X_q - g_X^{-1}(E)$. Then $g_X(\mu) = \cap\{H \mid H \in \mu_q\} \notin E$ and $E \notin \mu_q$. Hence $\Phi_X(E) \notin \mu$ and so $\mu \notin \sum_{\Phi_X(E)} \cap X_q = S_{\Phi_X(E)}$. Thus $S_{\Phi_X(E)} \subseteq g_X^{-1}(E)$. Suppose that $\xi \in g_X^{-1}(E)$. Then $g_X(\xi) \in E$ and for any $K \in \xi_q$, $K \wedge E \neq \emptyset$. Since ξ_q is a $Z(QFX)^{\#}$ -ultrafilter, $E \in \xi_q$ and $\Phi_X(E) \in \xi$. Hence $\xi \in S_{\Phi_X(E)}$ and $g_X^{-1}(E) \subseteq S_{\Phi_X(E)}$. Thus $g_X^{-1}(E) = S_{\Phi_X(E)}$.

Since $Z(QFX)^{\#}$ is a base for closed sets and g_X is one-to-one and onto, g_X is a homeomorphism.

For any space X, let $q_X = \Phi_X \circ g_X$.

Corollary 2.8. Let X be a space. Then (QFX, Φ_X) and (X_q, q_X) are equivlaent cover of X, that is, there is a homeomorphism $g_X : X_q \longrightarrow QFX$ such that $q_X = \Phi_X \circ g_X$.

106

Let X be a space. It is well-known that $QF(\beta X) = \mathscr{L}(Z(\beta X)^{\#})$. Since $Z(X)^{\#}$ and $Z(\beta X)^{\#}$ are Boolean isomorphic and $Z(X)^{\#} \subseteq \mathscr{A}_X$, there is a covering map $l_X : \mathscr{L}(\mathscr{A}_X) \longrightarrow QF\beta X$ such that $\Phi_\beta \circ l_X = \Phi_{\mathscr{A}_X}([3])$. In fact, $l_X(\alpha)$ is the $Z(X)^{\#}$ -ultrafilter such that $\alpha \cap Z(X)^{\#} \subseteq l_X(\alpha)$.

Theorem 2.9. Let X be a space. Then there is a homeomorphism $h_X : \beta QFX \longrightarrow \mathscr{L}(\mathscr{A}_X)$ such that $h_X \circ \beta_{QFX} = j \circ g_X^{-1}$, where $j : X_q \longrightarrow \mathscr{L}(\mathscr{A}_X)$ is the inclusion map.

Proof. By Theorem 2.7, βX_q and βQFX are homeomorphic. Since $j \circ g_X^{-1} : QFX \longrightarrow \mathscr{L}(\mathscr{A}_X)$ is a dense embedding, there is a continuous map $h_X : \beta QFX \longrightarrow \mathscr{L}(\mathscr{A}_X)$ such that $h_X \circ \beta_{QFX} = j \circ g_X^{-1}$. Since βQFX and $\mathscr{L}(\mathscr{A}_X)$ are compact spaces and β_{QFX} and j are dense embeddings, h_X is a covering map.

Let A, B be disjoint zero-sets in X_q . Then there are C, D in $Z(X_q)^{\#}$ such $C \cap D = \emptyset$, $A \subseteq C$ and $B \subseteq D$. Since $g_X : X_q \longrightarrow QFX$ is a homeomorphism, $g_X(C)$ and $g_X(D)$ belong to $Z(QFX)^{\#}$. Hence $\Phi_X(g_X(C)) = q_X(C) \in \mathscr{A}_X$ and $\Phi_X(g_X(D)) = q_X(D) \in \mathscr{A}_X$.

In the proof of Theorem 2.7, $g_X(S_{\Phi_X(g_X(C))}) = q_X(C)$ and $g_X(S_{\Phi_X(g_X(D))}) = q_X(D)$. Note that $S_{\Phi_X(g_X(C))} = S_{q_X(C)} = \sum_{q_X(C)} \wedge X_q$ and $S_{\Phi_X(g_X(D))} = S_{q_X(D)} = \sum_{q_X(D)} \wedge X_q$. Since $C \cap D = \emptyset$, $\sum_{q_X(C)} \wedge \sum_{q_X(D)} \wedge X_q = \emptyset$ and since $q_X(C) \in \mathscr{A}_X$ and $q_X(D) \in \mathscr{A}_X$, $\sum_{q_X(C)} \cap \sum_{q_X(D)} = \emptyset$. Since $\Phi_{\mathscr{A}_X}(\sum_{q_X(C)}) = q_X(C) = \Phi_{\mathscr{A}_X}(C)$, $C \subseteq \sum_{q_X(C)}$ and similarly, $D \subseteq \sum_{q_X(D)}$. Hence $cl_{\mathscr{L}(\mathscr{A}_X)}(C) \cap cl_{\mathscr{L}(\mathscr{A}_X)}(D) = \emptyset$ and by the Urysohn's extension theorem, h_X is a homeomorphism.

References

- F. Dashiell, A.W. Hager & M. Henriksen: Order-Cauchy completions of rings and vector lattices of continuous functions. *Canad. J. Math.* **32** (1980), 657-685.
- L. Gillman & M. Jerison: Rings of continuous functions. Van Nostrand, Princeton, New York, 1960.
- M. Henriksen, J. Vermeer & R.G. Woods: Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), 779-804.
- 4. ____: Wallman covers of compact spaces. Dissertationes Math. 280 (1989), 5-31.
- 5. M. Henriksen & R.G. Woods: Cozero complemented spaces; When the space of minimal prime ideals of a C(X) is compact. Topology Appl. **141** (2004), 147-170.
- 6. S. Iliadis: Absolutes of Hausdorff spaces. Sov. Math. Dokl. 2 (1963), 295-298.
- 7. C.I. Kim: Minimal covers and filter spaces. Topology Appl. 72 (1996), 31-37.

- 8. ____: Cloz-covers of Tychonoff spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), no. 4, 361-368.
- J. Porter & R.G. Woods: Extensions and Absolutes of Hausdorff spaces. Springer, Berlin, 1988.

^aDEPARTMENT OF MATHEMATICS EDUCATION, DANKOOK UNIVERSITY, YONGIN 448-701, REPUB-LIC OF KOREA *Email address*: kci206@hanmail.net

^bDEPARTMENT OF MATHEMATICS, SOONGSIL UNIVERSITY, SEOUL 156-743, REPUBLIC OF KOREA *Email address*: seashin@hanmail.net

108