DOI QR코드

DOI QR Code

황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도

Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells

  • 황원덕 (동의대학교 한의과대학 내과학교실) ;
  • 임용균 (동의대학교 한의과대학 내과학교실) ;
  • 손병일 ;
  • 박철 (동의대학교 자연과학대학 분자생물학과) ;
  • 박동일 (동의대학교 한의과대학 내과학교실) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Hwang, Won Deok (Department of Internal Medicine, Dongeui University College of Oriental Medicine) ;
  • Im, Yong-Gyun (Department of Internal Medicine, Dongeui University College of Oriental Medicine) ;
  • Son, Byoung Yil (Blue-Bio Industry Regional Innovation Center) ;
  • Park, Cheol (Department of Molecular Biology, College of Natural Sciences, Dongeui University) ;
  • Park, Dong Il (Department of Internal Medicine, Dongeui University College of Oriental Medicine) ;
  • Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine)
  • 투고 : 2013.01.26
  • 심사 : 2013.04.18
  • 발행 : 2013.04.30

초록

꿀풀과(Labiatae)에 속하는 황금(黃芩, S. baicalensis)은 한국, 중국, 몽골 및 시베리아 동부 등지에 분포하는 여러해살이 초본식물로서 예로부터 민간처방 약재로 사용되었으며, 한방에서는 뿌리 말린 것을 이질, 발열 및 황달의 치료제로 사용되고 있다. 또한 최근 연구에 따르면 황금 추출물은 항염증, 항당뇨, 항균, 항알레르기, 항바이러스, 항고혈압, 항산화 및 항암 효능을 가지는 것으로 알려져 있으나 신세포암에서의 항암효능 및 분자생물학적 기전에 대해서는 명확히 밝혀져 있지 않다. 본 연구에서는 인체 신세포암 Caki-1 세포에서 황금 에탄올 추출물(ethanol extract of S. baicalensis, EESB)이 유발하는 항암효과 및 항암기전을 조사하였다. 본 연구의 결과에 의하면 EESB 처리에 의한 Caki-1 세포의 증식억제는 apoptosis 유발과 밀접한 연관이 있었으며, 이는 DR4 Fas ligand 및 Bax 단백질의 발현 증가와 Bid, XIAP 및 cIAP-1의 발현 억제와 관련이 있었다. EESB는 또한 미토콘드리아의 기능 손상과 caspase-3의 기질단백질인 PARP, ${\beta}$-catenin 및 $PLC{\gamma}$-1 단백질의 단편화를 유발하였다. 그러나 EESB 처리에 의하여 유발되었던 apoptosis가 pan-caspases inhibitor인 z-VED-fmk를 이용하여 caspases의 활성을 억제하였을 경우 현저하게 감소되어, EESB에 의한 apoptosis 과정에 caspase의 활성 증대가 중요한 역할을 한다는 것을 알 수 있었다. 이러한 결과들은 황금의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 향후 수행될 추가 실험을 위한 기초 자료로서 그 가치가 매우 높을 것으로 생각된다.

Scutellaria baicalensis, belonging to the family Labiatae, is widely distributed in Korea, China, Mongolia, and eastern Siberia. It has been used in traditional medicine for various diseases, such as dysentery, pyrexia, jaundice, and carbuncles. In addition, S. baicalensis is reported to possess various beneficial pharmacological activities, including anti-inflammatory, antidiabetic, antiviral, antihypertension, antioxidant, and anticancer effects. However, the molecular mechanisms of its anticancer activity have not been clearly elucidated. In the present study, we investigated the proapoptotic effects of ethanol extract of S. baicalensis (EESB) on human renal cell carcinoma Caki-1 cells. The anti-proliferative activity of EESB was associated with apoptosis induction, which was associated with the up-regulation of death receptor 4, the Fas ligand, and Bax and the down-regulation of Bid, XIAP, and cIAP-1 proteins. EESB treatment also induced mitochondrial dysfunction, proteolytic activation of caspase-3, -8, and -9 and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase, ${\beta}$-catenin, and phospholipase C-${\gamma}1$. However, pretreatment of a pan-caspase inhibitor, z-VAD-fmk, significantly attenuated the EESB-induced apoptosis. Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent. Further studies will be needed to identify the active compounds that confer the anticancer activity of S. baicalensis.

키워드

참고문헌

  1. Bae, S. S., Perry, D. K., Oh, Y. S., Choi, J. H., Galadari, S. H., Ghayur, T., Ryu, S. H., Hannun, Y. A. and Suh, P. G. 2000. Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. FASEB J 14, 1083-1092.
  2. Baliga, B. and Kumar, S. 2003. Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ 10, 16-18. https://doi.org/10.1038/sj.cdd.4401166
  3. Bohn, O. L., De las Casas, L. E. and Leon, M. E. 2009. Tumor-to-tumor metastasis: Renal cell carcinoma metastatic to papillary carcinoma of thyroid-report of a case and review of the literature. Head Neck Pathol 3, 327-330. https://doi.org/10.1007/s12105-009-0147-9
  4. Burnett, B. P., Jia, Q., Zhao, Y. and Levy, R. M. 2007. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 10, 442-451. https://doi.org/10.1089/jmf.2006.255
  5. Chai, F., Truong-Tran, A. Q., Ho, L. H. and Zalewski, P. D. 1999. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 77, 272-278. https://doi.org/10.1046/j.1440-1711.1999.00825.x
  6. Checinska, A., Hoogeland, B. S., Rodriguez, J. A., Giaccone, G. and Kruyt, F. A. 2007. Role of XIAP in inhibiting cisplatin- induced caspase activation in non-small cell lung cancer cells: a small molecule Smac mimic sensitizes for chemotherapy-induced apoptosis by enhancing caspase-3 activation. Exp Cell Res 313, 1215-1224. https://doi.org/10.1016/j.yexcr.2006.12.011
  7. Choufani, E., Diligent, J., Galois, L. and Mainard, D. 2011. Metastatic renal cell carcinoma presenting as foot metastasis: case report and review of the literature. J Am Podiatr Med Assoc 101, 265-268. https://doi.org/10.7547/1010265
  8. Columbano, A. 1995. Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem 58, 181-190. https://doi.org/10.1002/jcb.240580207
  9. de Murcia, G. and Ménissier de Murcia, J. 1994. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19, 172-176. https://doi.org/10.1016/0968-0004(94)90280-1
  10. Deveraux, Q. L. and Reed, J. C. 1999. IAP family proteins-suppressors of apoptosis. Genes Dev 13, 239-252. https://doi.org/10.1101/gad.13.3.239
  11. Donovan, M. and Cotter, T. G. 2004. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim Biophys Acta 1644, 133-147. https://doi.org/10.1016/j.bbamcr.2003.08.011
  12. Du, J., Chen, G. G., Vlantis, A. C., Chan, P. K., Tsang, R. K. and van Hasselt, C. A. 2004. Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett 205, 81-88. https://doi.org/10.1016/j.canlet.2003.09.035
  13. Escudier, B., Eisen, T. and Stadler, W. M. 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356, 125-134. https://doi.org/10.1056/NEJMoa060655
  14. Fukuda, K. 1999. Apoptosis-associated cleavage of ${\beta}$-catenin in human colon cancer and rat hepatoma cells. Int J Biochem Cell Biol 31, 519-529. https://doi.org/10.1016/S1357-2725(98)00119-8
  15. Gao, J., Morgan, W. A., Sanchez-Medina, A. and Corcoran, O. 2011. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol Appl Pharmacol 254, 221-228. https://doi.org/10.1016/j.taap.2011.03.016
  16. Gao, Z., Huang, K., Yang, X. and Xu, H. 1999. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472, 643-650. https://doi.org/10.1016/S0304-4165(99)00152-X
  17. Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
  18. Huang, Y., Park, Y. C., Rich, R. L., Segal, D., Myszka, D. G. and Wu, H. 2001. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781-790.
  19. Huang, Y., Tsang, S. Y., Yao, X. and Chen, Z. Y. 2006. Biological properties of baicalein in cardiovascular system. Curr Drug Targets Cardiovasc Haematol Disord 5, 177-184, 2005.
  20. Huerta, S., Goulet, E. J., Livingston, E. H. 2006. Colon cancer and apoptosis. Am J Surg 191, 517-526. https://doi.org/10.1016/j.amjsurg.2005.11.009
  21. Jin, Z. and El-Deiry, W. S. 2005. Overview of cell death signaling pathways. Cancer Biol Ther 4, 139-163. https://doi.org/10.4161/cbt.4.2.1508
  22. Johnson, J. P. 1999. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 18, 345-357. https://doi.org/10.1023/A:1006304806799
  23. Jung, H. S., Kim, M. H., Gwak, N. G., Im, Y. S., Lee, K. Y., Sohn, Y., Choi, H. and Yang, W. M. 2012. Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro. J Ethnopharmacol 141, 345-349. https://doi.org/10.1016/j.jep.2012.02.044
  24. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. and Poirier, G. G. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53, 3976-3985.
  25. Kim, R., Emi, M. and Tanabe, K. 2005. Caspase-dependent and -independent cell death pathways after DNA damage (Review). Oncol Rep 14, 595-599.
  26. Kimberley, F. C. and Screaton, G. R. 2004. Following a TRAIL: update on a ligand and its five receptors. Cell Res 14, 359-372. https://doi.org/10.1038/sj.cr.7290236
  27. Lam, T. L., Lam, M. L., Au, T. K., Ip, D. T., Ng, T. B., Fong, W. P. and Wan, D. C. 2000. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci 67, 2889-2896. https://doi.org/10.1016/S0024-3205(00)00864-X
  28. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. and Earnshaw, W. C. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  29. Li, H., Zhu, H., Xu, C. J. and Yuan, J. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. https://doi.org/10.1016/S0092-8674(00)81590-1
  30. Lieberthal, W., Koh, J. S. and Levine, J. S. 1998. Necrosis and apoptosis in acute renal failure. Semin Nephrol 18, 505-518.
  31. Loeb, L. A., Loeb, K. R. and Anderson, J. P. 2003. Multiple mutations and cancer. Proc Natl Acad Sci USA 100, 776-781. https://doi.org/10.1073/pnas.0334858100
  32. Lu, Y., Joerger, R. and Wu, C. 2011. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J Agric Food Chem 59, 10934-10942. https://doi.org/10.1021/jf202741x
  33. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  34. Motzer, R. J., Bander, N. H. and Nanus, D. M. 1996. Renal-cell carcinoma. N Engl J Med 335, 865-875. https://doi.org/10.1056/NEJM199609193351207
  35. Muller, S., Briand, J. P., Barakat, S., Lagueux, J., Poirier, G. G., De Murcia, G. and Isenberg, D. A. 1994. Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 73, 187-196. https://doi.org/10.1006/clin.1994.1187
  36. Myklebust, J. H., Blomhoff, H. K., Rusten, L. S., Stokke, T. and Smeland, E. B. 2002. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 30, 990-1000. https://doi.org/10.1016/S0301-472X(02)00868-8
  37. Nagai, T., Suzuki, Y., Tomimori, T. and Yamada, H. 1995. Antiviral activity of plant flavonoid, 5,7,4'-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses. Biol Pharm Bull 18, 295-299. https://doi.org/10.1248/bpb.18.295
  38. Nicotera, P., Leist, M. and Ferrando-May, E. 1999. Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp 66, 69-73.
  39. Okada, H. and Mak, T. W. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4, 592-603. https://doi.org/10.1038/nrc1412
  40. Park, K. I., Park, H. S., Kang, S. R., Nagappan, A., Lee, D. H., Kim, J. A., Han, D. Y. and Kim, G. S. 2011. Korean Scutellaria baicalensis water extract inhibits cell cycle G1/S transition by suppressing cyclin D1 expression and matrix-metalloproteinase-2 activity in human lung cancer cells. J Ethnopharmacol 133, 634-641. https://doi.org/10.1016/j.jep.2010.10.057
  41. Petak, I. and Houghton, J. A. 2001. Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 7, 95-106. https://doi.org/10.1007/BF03032574
  42. Ratain, M. J., Eisen, T. and Stadler, W. M. 2006. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24, 2505-2512. https://doi.org/10.1200/JCO.2005.03.6723
  43. Rossé, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. 1998. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499. https://doi.org/10.1038/35160
  44. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. and Reed, J. C. 1997. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16, 6914-6925. https://doi.org/10.1093/emboj/16.23.6914
  45. Salvesen, G. S. and Duckett, C. S. 2002. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3, 401-410. https://doi.org/10.1038/nrm830
  46. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H and Peter, M. E. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17, 1675-1687. https://doi.org/10.1093/emboj/17.6.1675
  47. Scott, F. L., Denault, J. B., Riedl, S. J., Shin, H., Renatus, M. and Salvesen, G. S. 2005. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24, 645-655. https://doi.org/10.1038/sj.emboj.7600544
  48. Stennicke, H. R. and Salvesen, G. S. 1998. Properties of the caspases. Biochim Biophys Acta 1387, 17-31. https://doi.org/10.1016/S0167-4838(98)00133-2
  49. van Delft, M. F. and Huang, D. C. 2006. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16, 203-213. https://doi.org/10.1038/sj.cr.7310028
  50. Vilches Troya, J. 2005. Understanding cell death: a challenge for biomedicine. An R Acad Nac Med 122, 631-656.
  51. Waisundara, V. Y., Hsu, A., Huang, D. and Tan, B. K. 2008. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chin Med 36, 517-540. https://doi.org/10.1142/S0192415X08005953
  52. Wang, C. Z., Li, X. L., Wang, Q. F., Mehendale, S. R. and Yuan, C. S. 2010. Selective fraction of Scutellaria baicalensis and its chemopreventive effects on MCF-7 human breast cancer cells. Phytomedicine 17, 63-68. https://doi.org/10.1016/j.phymed.2009.07.003
  53. Wijnhoven, B. P., Dinjens, W. N. and Pignatelli, M. 2000. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87, 992-1005. https://doi.org/10.1046/j.1365-2168.2000.01513.x
  54. Zimmermann, K. C., Bonzon, C. and Green, D. R. 2001. The machinery of programmed cell death. Pharmacol Ther 92, 57-70. https://doi.org/10.1016/S0163-7258(01)00159-0

피인용 문헌

  1. Apoptotic Effect of ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts on MIA PaCa-2 Cells vol.27, pp.4, 2014, https://doi.org/10.6114/jkood.2014.27.4.158
  2. Extract from Artemisia annua Linn? Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1708
  3. Effect of Antioxidant Activities and Apoptosis Induction of Salvia plebeia R. Br. in Human Breast Cancer MCF-7 Cells vol.29, pp.2, 2018, https://doi.org/10.7856/kjcls.2018.29.2.197