DOI QR코드

DOI QR Code

무당벌레에서 유래된 HaGF peptide를 이용한 염증 억제 효과

Anti-inflammatory Effect of HaGF peptide of Harmonia axyridis

  • 김동희 (한국한방산업진흥원) ;
  • 김현정 (대구한의대학교 화장품약리학과) ;
  • 이진영 (호서대학교 한방화장품과학과) ;
  • 황재삼 (국립농업과학원 농업생물부) ;
  • 김인우 (국립농업과학원 농업생물부) ;
  • 이슬기 (대구한의대학교 화장품약리학과) ;
  • 정현국 (대구한의대학교 화장품약리학과) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Kim, Dong-Hee (Korea Promotion Institute for Traditional Medicine Industry) ;
  • Kim, Hyeon-Jeong (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Lee, Jin-Young (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Kim, In-Woo (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Lee, Seul-Gi (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Jeong, Hyeon-Guk (Department of Cosmeceutical Science, Daegu Haany University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Haany University)
  • 투고 : 2012.11.12
  • 심사 : 2013.04.22
  • 발행 : 2013.04.30

초록

본 연구에서는 무당벌레 유충으로부터 분리된 항균 펩타이드 유전자의 일부 영역인 HaGF를 이용하여 대식세포의 염증에 미치는 영향을 조사하였다. 세포는 LPS 처리 후 한 시간 뒤에 HaGF를 처리를 하여, 세포 독성이 나타나지 않는 농도인 5, 25, 50, 100 ${\mu}g/ml$을 사용하였다. 그 결과 HaGF가 염증성 cytokine의 생성을 감소시키는 것을 확인 하였으며 iNOS와 COX-2 역시 100 ${\mu}g$/ml의 농도에서 각각 51%, 49% 저해율을 보였다. 따라서, HaGF는 LPS로 유도된 대식세포주인 Raw 264.7 세포에서의 염증 반응 억제 효과를 기대할 수 있었다.

Harmonia axyridis is known to display diverse biological activities, such as growth promotion. However, few studies have investigated the effect of H. axyridis on inflammation of the skin. In this study, we explored the anti-inflammatory effect of the Harmoniasin gene fragment (HaGF) peptide from H. axyridis on macrophage cells. During the entire experimental period, 5, 25, 50, and 100 ${\mu}g/ml$ of HaGF showed no cytotoxicity. However, at these concentrations, HaGF inhibited the activity of iNOS and COX-2 by 51% and 49%, respectively. In addition, the HaGF extract reduced the release of inflammatory cytokines, including TNF-a and IL-6. Therefore, HaGF has been LPS-induced macrophage Raw 264.7 cells could be expected from the inhibitory effects of the inflammatory.

키워드

참고문헌

  1. Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance. P Neuro 37, 355-361.
  2. Hanada, T. and Yoshimura, A. 2002. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13, 412-421.
  3. Higuchi, M., Hisgahi, N., Taki, H. and Osawa, T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 144, 1425-1431.
  4. Hume, D. A., Wells, C. A. and Ravasi, T. 2007. Transcriptional regulatory networks in macrophages. Novartis Found Symp 281, 2-18.
  5. Kim, R. G., Shin, K. M., Chun, S. K., Ji, S. Y., Seo, S. H., Park, H. J., Choi, J. W. and Lee, K. T. 2002. In vitro anti-inflammatory activity of the essential oil from ligularia fischeri var. spiciformis in murine macrophage RAW 264.7 cells. Yakhak Hoeji 46, 343-347.
  6. Kou, J., Ni, Y., Li, N., Wang, J., Liu, L. and Jiang, Z. H. 2005. Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyachis lamellidens. Biol Pharm Bull 28, 176-180. https://doi.org/10.1248/bpb.28.176
  7. Kurioka, A. and Uamazaki, M. 2002. Purification and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombys mori. Biosci Biotechnol Biochem 66, 1396-1399. https://doi.org/10.1271/bbb.66.1396
  8. Li, N. G., Osakovskii, V. L. and Ivanova, S. S. 2003. Chemical composition and cryoprotective activity of ethanol extract from winter caterpillars Aporia crataegi L. Izv Akad Nauk Ser Biol 5, 547-552.
  9. Lin, W. J. and Yeh, W. C. 2005. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock 24, 206-209. https://doi.org/10.1097/01.shk.0000180074.69143.77
  10. Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. 2003. Inhibition of lipopolysaccharide -inducible nitric oxide synthase, TNF-${\alpha}$ and COX-2 expression by sauchinone effects on I-${\kappa}B{\alpha}$ phosphorylation, C/EBP and AP-1 activation. British J Pharmacol 139, 11-20. https://doi.org/10.1038/sj.bjp.0705231
  11. Lee, T. H., Kwak, H. B., Kim, H. H., Lee, Z. H., Chung, D. K., Baek, N. i. and Kim, J. 2007. Methanol extracts of Stewartia Korean inhibition cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-Kappa B transactivation in LPS-activated Raw 264.7 cells. Mol Cells 23, 398-404.
  12. Ma, Y., Wang, X., Zhao, Y., Kawabata, T. and Okada, S. 1997. Inhibitory effects of Chinese and extract (CAE) on nephrotoxycity induced by ferric-nitrilotriacetate (Fe-NTA) in Wistar rats. Res. Commun Mol Pathol Pharmacol 96, 169-178.
  13. Marin, J. and Rodriquez-Martinez, M. A. 1997. Role of vascular nitric oxide in physiological and pathological conditions. Pharmacol Ther 75, 111-134. https://doi.org/10.1016/S0163-7258(97)00051-X
  14. Moncada, S., Palmer, R. M. and Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43, 109-142.
  15. Mori, M. 2007. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr 137, 1616-1620.
  16. Nakatani, T., Konishi, T., Miyahara, K. and Noda, N. 2004. Three novel cantharidin-related compounds from the Chinese blister beetle, Mylabris Phalerata Pall. Chem Pharm Bull 52, 807-809. https://doi.org/10.1248/cpb.52.807
  17. Nathan, C. and Xie, Q. W. 1994. Nitric oxide synthases: roles, tolls and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  18. Palmer, R. M., Ashton, D. S. and Moncada, S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666. https://doi.org/10.1038/333664a0
  19. Radi, R., Beckman, J. S., Bush, K. M. and Freema, B. A. 1991. Peroxynitrite oxidation of sulfhydryls the cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266, 4244-4250.
  20. Rodeberg, D. A., Chaet, M. S., Bass, R. C., Arkoviz, M. S. and Garcia, V. F. 1995. Nitric oxide: An overview. American J Surgery 170, 292-303. https://doi.org/10.1016/S0002-9610(05)80017-0
  21. Tezuka, Y., Irikawa, S., Kaneko, T., Banskota, A. H., Nagaoka, T., Xiong, Q., Hase, K. and Kadota, S. 2001. Screening of Chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of zanthoxylum bugeanum. J Ethnopharmacol 77, 209-217. https://doi.org/10.1016/S0378-8741(01)00300-2
  22. Wang, C. and Leger, R. J. 2005. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisoplae var. acridum. Eukaryot Cell 4, 937-947. https://doi.org/10.1128/EC.4.5.937-947.2005
  23. Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-${\gamma}$, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316, 209-215.
  24. Yun, H. J., Heo, S. K., Yi, H. S., Kim, C. H., Kim, B. W. and Park, S. D. 2008. Anti-inflammatory effect of injinho-tang in RAW264.7 Cells. Korean J Herbol 23, 169-178.

피인용 문헌

  1. in RAW 264.7 cells vol.51, pp.4, 2018, https://doi.org/10.4163/jnh.2018.51.4.323