References
- Brown, R. A. J. & Renshaw, P. D. (2000). Collective argumentation: A sociocultural approach to reframing classroom teaching and learning. In: H. Cowie and G. van der Aalsvoort (Eds.), Social interaction in learning and instruction: The meaning of discourse for the construction of knowledge (pp. 52-66). Amsterdam: Pergamon Press.
- Chaput, B.; Grad, C. J. & Henry, M. (2011). Frequentist Approach: Modelling and Simulation in Statistics and Probability Teaching. In: Carmen Batanero et al. (Eds.), Teaching statistics in school mathematics — challenges for teaching and teacher education. A joint ICMI/IASE Study: The 18th ICMI Study (pp. 85-95). Berlin: Springer. ME 2012b.00960
- Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning mathematics. Educ. Stud. Math. 61(1-2), 103-131. ME 2006c.01581 https://doi.org/10.1007/s10649-006-0400-z
- Godino, J. D.; Batanero, C. & Font,V. (2007) The onto-semiotic approach to research in mathematics education. ZDM 39(1-2), 127-135. ME 2009e.00177 https://doi.org/10.1007/s11858-006-0004-1
- Gusmao, T.; Santana, E.; Cazorla, I. & Cajaraville, J. (2010). A semiotic analysis of "Monica's random walk" Activity to teach basic concepts of probability. Paper presented at the Eighth International Conference on Teaching Statistics (ICOTS8, July, 2010). Available from: http://www.stat.auckland.ac.nz/-iase/publications/icots8/ICOTS8_C140_GUSMAO.pdf
- O'Halloran, K. L. (2005). Mathematical discourse, language, symbolism and visual images. London and New York: Continuum.
- Radford. L . (2001). On the relevance of Semiotics in Mathematics Education. Paper presented to the Discussion Group on Semiotics and Mathematics Education at the 25th PME International Conference, Netherlands, University of Utrecht, Netherlands; July 12-17, 2001.
- Sanders, T.; Spooren, W. & Noordman, L. (1992). Toward a Taxonomy of Coherence Relations. Discourse Processes 15(1), 1-35. https://doi.org/10.1080/01638539209544800
- Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. Cambridge, UK: Cambridge University Press. ME 2011d.00346
- Schoenfeld, A. H. (2002). A highly interactive discourse structure. In: Social constructivist teaching, Vol. 9 (pp. 131-169). New York: Elsevier Science Ltd. http://umdscienceedseminar.pbworks.com/f/Schoenfeld+(2002).pdf
- Steinbring, H. (2006). What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction. Educ. Stud. Math. 61(1-2), 133-162. ME 2006c.01718 https://doi.org/10.1007/s10649-006-5892-z
- Yackel, E. & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. J. Res. Math.Educ. 27(4), 458-477. ME 1997f.03754 https://doi.org/10.2307/749877