DOI QR코드

DOI QR Code

알로에 겔 마이크로캡슐의 고농도 현탁액의 제조 및 특성

Preparation and Characterization of Dense Suspension of Aloe Gel Microcapsule

  • 고남경 (강원대학교 공과대학 생물공학과) ;
  • 이진실 (강원대학교 공과대학 생물공학과) ;
  • 이신영 (강원대학교 공과대학 생물공학과) ;
  • 허원 (강원대학교 공과대학 생물공학과)
  • Go, Nam Kyung (Department of Bioengineering and Technology, Kangwon National University) ;
  • Lee, Jin Sil (Department of Bioengineering and Technology, Kangwon National University) ;
  • Lee, Shin Young (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hur, Won (Department of Bioengineering and Technology, Kangwon National University)
  • 투고 : 2012.10.17
  • 심사 : 2013.02.08
  • 발행 : 2013.03.31

초록

알로에 겔이 분산된 W/O 에멀젼을 감압 건조하는 방법으로 분산상의 수분을 제거하여 알로에 겔 마이크로캡슐을 제조하였다. 마이크로캡슐은 미네랄오일로 세척하고 재현탁시켜 유화제를 제거한 후에도 안정적인 현탁액으로 유지되었으며, 내부가 균일하게 채워진 직경 6.6 ${\mu}m$ 이하인 구형 입자로 구성되어 있었다. 미네랄오일에 재현탁된 마이크로캡슐은 분율이 41% 이상에서 급격하게 점도가 증가하였고, 300 Pa 이상의 항복응력을 가진 전단유동화 특성을 나타내었으나, 틱소트로피는 뚜렷하게 관찰되지 않는 유변학적인 특성을 보였다. 오일에 현탁된 알로에 겔 마이크로캡슐의 분율이 높을수록 반고체의 특성이 증가하고 $105^{\circ}C$에서 15 min 동안 가열하여도 에멀젼의 안정성이 유지됨을 경시적으로 관찰하였다. 따라서 알로에 겔 마이크로캡슐 현탁 크림을 기본 제형으로 다양한 종류의 알로에 겔 화장품의 개발이 가능할 것으로 예상된다.

Aloe gel microcapsule was prepared by dehydrating dispersed aloe gel droplets in the form of W/O emulsion using a vacuum evaporator. The microcapsules remained in stable suspensions after washing with mineral oil and had a homogeneous spherical structure with diameter less than 6.4 ${\mu}m$. The microcapsule suspension in mineral oil (> 41%) exhibited a step increase in viscosity and shear-thinning but not showed thixotropic behavior with a yield stress higher than 300 Pa. The dense suspension appeared to be semi-solid as the microcapsule fraction increases and to be stable after heat treatment at $105^{\circ}C$ for 15 min. In conclusion, the dense suspension composed of gel microcapsules is expected to provide a basic cosmetic formulation that can be applied to develop various types of aloe gel cosmetic products.

키워드

참고문헌

  1. C. Ulbricht, J. Armstrong, E. Basch, S. Basch, S. Bent, C. Dacey, S. Dalton, I. Foppa, N. Giese, P. Hammerness, C. Kirkwood, D. Sollars, S. Tanguay‐ Colucci, and W. Weissner, An evidence‐based systematic review of Aloe vera by the natural standard research collaboration, J. Herb Pharmacother., 7(3), 279 (2007).
  2. D. Grindlay and T. Reynolds, The Aloe vera phenomenon: A review of the properties and modern uses of the leaf parenchyma gel, J. Ethnopharmacol., 16(2), 117 (1986). https://doi.org/10.1016/0378-8741(86)90085-1
  3. J. Reuter, A. Jocher, J. Stump, B. Grossjohann, G. Franke, and C. M. Schempp, Investigation of the anti ‐inflammatory potential of Aloe vera gel (97.5%) in the ultraviolet erythema test, Skin Pharmacol. Physiol., 21(2), 106 (2008). https://doi.org/10.1159/000114871
  4. T. Reynolds and A. C. Dweck, Aloe vera leaf gel: a review update, J. Ethnopharmacol., 68(1), 3 (1999). https://doi.org/10.1016/S0378-8741(99)00085-9
  5. Korea Food & Drug Administration, FKDA Notice no. 2005‐68 (2005).
  6. J. H. Baek, S. A. Kim, and S. Y. Lee, Concentration of fresh gel from Aloe vera L. by using ultrafiltration process, Korean J. Biotechnol. Bioengin., 23, 169 (2008).
  7. N. J. A. Sloane, The sphere-packing problem, Documenta Mathematika, 3, 387 (1998).
  8. A. R. Kansal1, S. Torquato, and F. H. Stillinger, Computer generation of dense polydisperse sphere packings, J. Chem. Phys., 117, 8212 (2002). https://doi.org/10.1063/1.1511510
  9. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9, 671 (2012). https://doi.org/10.1038/nmeth.2089
  10. J. H. Hamman, Composition and applications of Aloe vera leaf gel, Molecules, 13(8), 1599 (2008). https://doi.org/10.3390/molecules13081599
  11. M. Krokida, A. Pappa, and M. Agalioti, Effect of drying on Aloe's functional components, Procedia Food Sci., 1, 1523 (2011). https://doi.org/10.1016/j.profoo.2011.09.225
  12. D. Quemada, Rheological modelling of complex fl uids. I. The concept of effective volume fraction revisited, Eur. Phys. J. AP., 1, 119 (1998).
  13. J. M. Brader and M. Kruger, Density profiles of a colloidal liquid at a wall under shear flow, Mol. Phys., 109(7), 1029 (2011). https://doi.org/10.1080/00268976.2010.541889
  14. I. M. Krieger and T. J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres, T. Soc. Rheol., 3, 137 (1959). https://doi.org/10.1122/1.548848
  15. J. McCulfor, P. Himes, and M. R. Anklam, The effects of capillary forces on the flow properties of glass particle suspensions in mineral oil, AIChE J., 57(9), 2334 (2011). https://doi.org/10.1002/aic.12451
  16. W. H. Kim, K. S. Lee, and K. K. Lee, An experimental study on the property and stability of W/O emulsion by various structures of smulsifier, J. Soc. Cosmet. Scientists Korea, 38(2), 119 (2012). https://doi.org/10.15230/SCSK.2012.38.2.119
  17. V. O. Ikem, A. Menner, and A. Bismarck, High internal phase emulsions stabilized solely by functionalized silica particles. Angew. Chem. Int. Ed., 48, 632 (2009). https://doi.org/10.1002/anie.200990003