DOI QR코드

DOI QR Code

Comparative Study on Antioxidative Activity of Glycyrrhiza uralensis and Glycyrrhiza glabra Extracts by Country of Origin

원산지별 감초 추출물의 항산화 활성 비교 연구

  • Han, Saet Byeol (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Gu, Hyun A (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Kim, Su Ji (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Kim, Hye Jin (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Kwon, Soon Sik (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Jeon, So Ha (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Hwang, Jun Pil (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 한샛별 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 구현아 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 김수지 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 김혜진 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 권순식 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 김해수 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 전소하 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 황준필 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소)
  • Received : 2012.08.30
  • Accepted : 2013.03.13
  • Published : 2013.03.31

Abstract

In this work, comparative study on antioxidative activities of extracts from Glycyrrhiza uralensis (G. uralensis) produced in Korea and in China and Glycyrrhiza glabra (G. glabra) produced in Uzbekistan was conducted. Among three origins, 50% ethanol extracts (21.15 ${\mu}g/mL$), ethyl acetate fraction (29.15 ${\mu}g/mL$) and aglycone fraction (3.26 ${\mu}g/mL$) of G. uralensis from Korea showed the higher free radical (1,1-phenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$) than extracts from other origins. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of extracts from three origins on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using luminol-dependent chemiluminescence assay 50% ethanol extract (1.00 ${\mu}g/mL$) and ethyl acetate fraction (0.34 ${\mu}g/mL$) of G. uralensis from China showed the most prominent ROS scavenging activity. The protective effects of extract/fractions of G. uralensis and G. glabra extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. 50% ethanol extract and aglycone fraction of G. uralensis and G. glabra extracts from three origins showed cellular protective effects in a concentration dependent manner (5 ~ 50 ${\mu}g/mL$). Aglycone fraction of G. uralensis from Korea (${\tau}_{50}$ = 847.4 min)especially showed cellular protective effects four times higher than that from China (${\tau}_{50}$ = 194.3 min). These results indicate that G. uralensis and G. glabra extracts, which have been used as whitening agent, could be applicable to functional cosmetic ingredient as a natural antioxidant. Judging from the prominent cellular protecitve effects, it is concluded that G. uralensis and G. glabra extracts can protect the skin from $^1O_2$ and various ROS induced by UV.

본 연구에서는 한국과 중국 감초(Glycyrrhiza uralensis) 및 우즈베키스탄 감초(Glycyrrhiza glabra)를 이용하여 원산지별 감초 추출물의 항산화 활성에 관한 비교 연구를 수행하였다. 감초 추출물의 자유 라디칼(1, 1-phenyl-2-picrylhydrazyl, DPPH) 소거활성($FSC_{50}$)은 각 3가지 원산지 중 한국 감초가 50% 에탄올 추출물(21.15 ${\mu}g/mL$), 에틸아세테이트 분획(29.15 ${\mu}g/mL$), 아글리콘 분획(3.26 ${\mu}g/mL$)에서 모두 가장 우수한 활성을 나타내었다. 루미놀-의존성 화학발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$ 계에서 생성된 활성산소종(reactive oxygen species, ROS)에 대한 감초 추출물의 총 항산화능($OSC_{50}$)은 중국 감초의 50% 에탄올 추출물(1.00 ${\mu}g/mL$)과 에틸아세테이트 분획(0.34 ${\mu}g/mL$)이 가장 높은 활성을 나타내었다. Rose-bengal로 증감된 사람 적혈구의 광용혈에 대한 억제 효과를 측정하였을 때 원산지별 감초의 50% 에탄올 추출물과 아글리콘 분획 모두 농도범위(5 ~ 50 ${\mu}g/mL$)에서 농도의존적으로 세포 보호 효과를 나타내었으며, 특히 아글리콘 분획(10 ${\mu}g/mL$)의 경우 한국 감초(${\tau}_{50}$ = 847.4 min)가 동일한 종인 중국 감초(${\tau}_{50}$ = 194.3 min)보다 약 4배 더 우수한 활성을 나타내었다. 이상의 결과를 통해 미백 소재로만 주로 사용되어오던 감초 추출물이 천연 항산화제로서 화장품 분야에 응용될 수 있을 것으로 예상된다. 특히 세포보호 효과가 우수한 것으로 보아 감초 추출물이 자외선으로 유도된 $^1O_2$와 외 ROS로부터 피부를 효과적으로 보호할 수 있을 것으로 예상된다.

Keywords

References

  1. J. S. Song and Y. A. Kim, A study on the future market prospect of domestic functional cosmetics industry, J. Korean Soc. Design Culture., 15(4), 258 (2009).
  2. G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Aging- and photoaing-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 117(5), 1212 (2011).
  3. M. G. Kosmadaki and B. A. Gilchrest, The role of telomeres in skin aging/photoaging, J. Micron., 35(3), 155 (2004). https://doi.org/10.1016/j.micron.2003.11.002
  4. S. Pillai, C. Oresajo and J. Hayward, Ultraviolet radication and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet, Science, 27(1), 17 (2005). https://doi.org/10.1111/j.1467-2494.2004.00241.x
  5. J. L. Mccullough and K. M. Kelly, Prevention and Treatment of skin aging, Annals of the New York Academy of Science, 1067, 323 (2006). https://doi.org/10.1196/annals.1354.044
  6. M. Berneburg, H. Plettenberg, and J. Krutmann, Photoaging of human skin, Photodermatol Photoimmunol Photomed., 16, 239 (2000). https://doi.org/10.1034/j.1600-0781.2000.160601.x
  7. J. C. Tilak, K. K. Boloor, S. Sane Ketaki, S. Ghaskadbi Saroj, and R. D. Lele, Free raicals and antioxidants in human heaths: Current status and future prospects, J. Association of Physicians of India, 52, 796 (2004).
  8. T. F. Slater, Free-radical mechanisms in tissue injury, J. Biochem., 222(1), 15 (1984).
  9. L. L. Ji, Antioxidants and oxidative stress in exercise, Exp. Biol. Mel., 222(3), 283 (1999). https://doi.org/10.1046/j.1525-1373.1999.d01-145.x
  10. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 39(1), 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
  11. A. R. Kim, J. E. Kim, and S. N. Park, Antioxidative activity and component analysis of Phellinus liteus extracts, J. Soc. Cosmet. Scientists Korea, 37(4), 309 (2011).
  12. H. J. Lee and S. N. Park, Antioxidative effect and active component analysis of Quercus salicina blume extracts, J. Soc. Cosmet. Scientists Korea, 37(2), 143 (2011).
  13. B. Halliwell, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, American Society of Plant Biologists., 141(2), 312 (2006).
  14. D. H. Won, S. B. Han, J. P. Hwang, S. J. Kim, J. N. Park, and S. N. Park, Antioxidative effect and tyrosinase inhibitory activity of Lindera obtusiloba blume extracts, J. Soc. Cosmet. Scientists Korea, 38(4), 297 (2012). https://doi.org/10.15230/SCSK.2012.38.4.297
  15. B. Uttara, A. V. Singh, P. Zamboni, and R. T. Mahajan, Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidants therapeutic options, Curr Neurophamacol., 7(1), 65 (2009). https://doi.org/10.2174/157015909787602823
  16. V. Lobo, A. Patil, and N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev., 4(8), 118 (2010). https://doi.org/10.4103/0973-7847.70902
  17. J. H. Park, Q. Wu, K. H. Yoo, H. I. Yong, S. M. Cho, I. S. Chung, and N. I. Back, Cytotoxic effect of flavonoids from the roots of Glycyrrhiza uralensis on human cancer cell lines, J. Appl. Biol. Chem., 54(1), 67 (2011). https://doi.org/10.3839/jabc.2011.012
  18. T. S. Yoon, M. S. Cheon, S. J. Kim, A. Y. Lee, B. C. Moon, J. M. Chun, B. K. Choo, and H. K. Kim, Evaluation of solvent extraction on the anti-inflammatory efficacy, Korean J. Medicinal Crop Sci., 18(1), 28 (2010).
  19. E. Y. Ahn, D. H. Shin, N. I. Back, and J. A. Oh, Isolation and identification of antimicrobial active substance from Glycyrrhiza uralensis, Korea J. Food Sci. Technol., 30(3), 680 (1998).
  20. K. S. Woo, I. G. Hwang, Y. H. Noh, and H. S. Jeong, Antioxidant activity of heated licorice (Glycyrrhiza uralensis Fisch) extracts in Korea, J. Korean Soc. Food Sci. Nutr., 36(6), 689 (2007). https://doi.org/10.3746/jkfn.2007.36.6.689
  21. S. J. Kim, D. H. Kweon, and J. H. Lee, Investigation of antioxidative activity and stability of ethanol extracts of licorice roots (Glycyrrhiza glabra), Koream J. Food Sci. Technol., 38(4), 584 (2006).

Cited by

  1. Antioxidant Activities of Gynura procumbens Extracts vol.41, pp.2, 2015, https://doi.org/10.15230/SCSK.2015.41.2.181
  2. Antioxidant and Antibacterial Activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) Extracts Obtained by various Extract Conditions vol.41, pp.4, 2015, https://doi.org/10.15230/SCSK.2015.41.4.361
  3. Browning inhibition of fresh-cut lotus roots by blanching in Glycyrrhiza glabra L. and Astragalus membranaceus Bunge extracts vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.151
  4. A Study on the Stability of the Cream Containing Glycyrrhiza uralensis Extract vol.39, pp.2, 2013, https://doi.org/10.15230/SCSK.2013.39.2.117
  5. Antioxidant and Tyrosinase Inhibitory Activities of Dicaffeoylquinic Acid Derivatives Isolated from Gnaphalium Affine D. DON vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1058
  6. Physiological Activity of the Glycyrrhiza uralensis Extracts as a Cosmetic Product vol.15, pp.1, 2017, https://doi.org/10.20402/ajbc.2016.0084
  7. Protective Effects of Radiation-induced Blackberry Mutant Extract on Carbon Tetrachloride (CCl4)-induced Liver Injury in Sprague-Dawley Rats vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.807
  8. Antioxidant and Antimicrobial Activities of Combined Extracts of Galla rhois, Achyranthes japonica Nakai, Terminalia chebula Retz and Glycyrrhiza uralensis vol.29, pp.1, 2014, https://doi.org/10.7841/ksbbj.2014.29.1.29
  9. Quality and Antioxidant Activity of Yanggaeng Containing Herbal Medicine Extracts for the Elderly vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1304
  10. Screening of Effective Extraction Conditions for Increasing Antioxidant Activities of Licorice Extracts from Various Countries of Origin vol.39, pp.4, 2013, https://doi.org/10.15230/SCSK.2013.39.4.259