DOI QR코드

DOI QR Code

NFATc1 and NFATc3 is Involved in the Expression of Receptor Activator of NF-${\kappa}B$ Ligand in Activated T Lymphocytes

  • Heo, Sun-Jae (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Park, Hyun-Jung (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
  • 투고 : 2013.02.15
  • 심사 : 2013.02.28
  • 발행 : 2013.03.31

초록

Receptor activator of NF-${\kappa}B$ ligand (RANKL) is an essential cytokine for osteoclast differentiation, activation and survival. T lymphocytes such as $T_{17}$ cells, a subset of T helper cells that produce IL-17, play an important role in rheumatoid arthritic bone resorption by producing inflammatory cytokines and RANKL. It has not yet been clearly elucidated how T cell activation induces RANKL expression. T cell receptor activation induces the activation of nuclear factor of activated T cell (NFAT) and expression of its target genes. In this study, we examined the role of NFAT in T cell activation-induced RANKL expression. EL-4, a murine T lymphocytic cell line, was used. When T cell activation was induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin, RANKL expression increased in a time-dependent manner. In the presence of cyclosporin, an inhibitor of NFAT activation, this PMA/ionomycin-induced RANKL expression was blocked. Overexpression of either NFATc1 or NFATc3 induced RANKL expression. Chromatin immunoprecipitation results demonstrated that PMA/ionomycin treatment induced the binding of NFATc1 and NFATc3 to the mouse RANKL gene promoter. These results suggest that NFATc1 and NFATc3 mediates T cell receptor activation-induced RANKL expression in T lymphocytes.

키워드

참고문헌

  1. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-42. https://doi.org/10.1038/nature01658
  2. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006; 24:33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
  3. Nakashima T, Takayanagi H. New regulation mechanisms of osteoclast differentiation. Ann N Y Acad Sci. 2011;1240: E13-E18. https://doi.org/10.1111/j.1749-6632.2011.06373.x
  4. Jun JH, Kim HK, Woo KM, Kim GS, Baek JH. Increase in intracellular calcium is necessary for RANKL induction by high extracellular calcium. Int J Oral Biol. 2005;30:9-15.
  5. Lee J, Kim K, Kim N. Negative regulators in RANKLinduced osteoclastogenesis. Int J Oral Biol. 2007;32:1-5.
  6. Feske S, Okamura H, Hogan PG, Rao A. $Ca^{2+}$/ calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun. 2003;311:1117-1132. https://doi.org/10.1016/j.bbrc.2003.09.174
  7. Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003; 17:2205-2232. https://doi.org/10.1101/gad.1102703
  8. Oh-hora M, Rao A. The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect. 2009;11:612-619. https://doi.org/10.1016/j.micinf.2009.04.008
  9. Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, Sakai H. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275:768-775. https://doi.org/10.1006/bbrc.2000.3379
  10. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795-823. https://doi.org/10.1146/annurev.immunol.20.100301.064753
  11. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292-304. https://doi.org/10.1038/nri2062
  12. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80:1483-1521. https://doi.org/10.1152/physrev.2000.80.4.1483
  13. Schulz RA, Yutzey KE. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol. 2004;266:1-16. https://doi.org/10.1016/j.ydbio.2003.10.008
  14. Borel JF, Feurer C, Gubler HU, Stahelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions. 1976;6:468-475. https://doi.org/10.1007/BF01973261
  15. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H, Ochiai T. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40:1256-1265. https://doi.org/10.7164/antibiotics.40.1256
  16. Okamoto K, Takayanagi H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res Ther. 2011;13:219. https://doi.org/10.1186/ar3323
  17. Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT. Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun. 1999;265:144-150. https://doi.org/10.1006/bbrc.1999.1623
  18. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304-309. https://doi.org/10.1038/46303
  19. Lubberts E, van den Bersselaar L, Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK, Joosten LA, van den Berg WB. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J Immunol. 2003;170:2655-2662.
  20. Yuvaraj S, Griffin AC, Sundaram K, Kirkwood KL, Norris JS, Reddy SV. A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells. Mol Cancer Res. 2009;7:1399-1407. https://doi.org/10.1158/1541-7786.MCR-08-0589
  21. Morgan AJ, Jacob R. Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J. 1994;300: 665-672. https://doi.org/10.1042/bj3000665
  22. Zhao Y, Koebis M, Suo S, Ohno S, Ishiura S. Regulation of the alternative splicing of sarcoplasmic reticulum $Ca^{2+}$ -ATPase1 (SERCA1) by phorbol 12-myristate 13-acetate (PMA) via a PKC pathway. Biochem Biophys Res Commun. 2012;423:212-217. https://doi.org/10.1016/j.bbrc.2012.05.033
  23. Lee HL, Bae OY, Baek KH, Kwon A, Hwang HR, Qadir AS, Park HJ, Woo KM, Ryoo HM, Baek JH. High extracellular calcium-induced NFATc3 regulates the expression of receptor activator of NF-kappaB ligand in osteoblasts. Bone. 2011;49:242-249. https://doi.org/10.1016/j.bone.2011.04.006
  24. Boss V, Talpade DJ, Murphy TJ. Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J Biol Chem. 1996;271:10429- 10432. https://doi.org/10.1074/jbc.271.18.10429
  25. Flanagan WM, Corthesy B, Bram RJ, Crabtree GR. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 1991;352:803-807. https://doi.org/10.1038/352803a0
  26. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilincyclosporin A and FKBP-FK506 complexes. Cell. 1991;66: 807-815. https://doi.org/10.1016/0092-8674(91)90124-H
  27. O'Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O'Neill EA. FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature. 1992;357:692-694. https://doi.org/10.1038/357692a0
  28. Pinkas-Kramarski R, Edelman R, Stein R. Indications for selective coupling to phosphoinositide hydrolysis or to adenylate cyclase inhibition by endogenous muscarinic receptor subtypes M3 and M4 but not by M2 in tumor cell lines. Neurosci Lett. 1990;108:335-340. https://doi.org/10.1016/0304-3940(90)90663-T
  29. Okamoto K, Takayanagi H. Osteoclasts in arthritis and Th17 cell development. Int Immunopharmacol. 2011;11: 543-548. https://doi.org/10.1016/j.intimp.2010.11.010