DOI QR코드

DOI QR Code

Heterogeneous Suzuki Cross-Coupling Reaction Catalyzed by Magnetically Recyclable Nanocatalyst

  • Choi, Kwang-Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Shokouhimehr, Mohammadreza (School of Chemical and Biological Engineering, Seoul National University) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University)
  • 투고 : 2013.01.22
  • 심사 : 2013.02.23
  • 발행 : 2013.05.20

초록

The Suzuki cross-coupling reactions proceeded in excellent yields when it was catalyzed by magnetically recyclable nanocatalyst. This nanocatalyst provided very high catalytic activity with low loading level (1 mol %), because the palladium nanoparticles were so small in size (~2 nm) and located on the surface of the nanocomposite. It was also easily recovered from the reaction mixture using a magnet and reused for six consecutive cycles.

키워드

참고문헌

  1. Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, 6723.
  2. Li, C.-J. Chem. Rev. 1993, 93, 2023. https://doi.org/10.1021/cr00022a004
  3. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
  4. Piao, Y.; Jang, Y.; Shokouhimehr, M.; Lee, I. S.; Hyeon T. Small 2007, 3, 255. https://doi.org/10.1002/smll.200600402
  5. Perez-Lorenzo, M. J. Phys. Chem. Lett. 2012, 3, 167. https://doi.org/10.1021/jz2013984
  6. Mandali, P. K.; Chand, D. K. Catal. Commun. 2013, 31, 16. https://doi.org/10.1016/j.catcom.2012.10.020
  7. Glasspoole, B. W.; Ghozati, K.; Moir, J. W.; Crudden, C. M.; Chem. Commun. 2012, 48, 1230. https://doi.org/10.1039/c2cc16076e
  8. Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. https://doi.org/10.1021/ar800036s
  9. Christmann, U.; Vilar, R. Angew. Chem. Int. Ed. 2005, 44, 366. https://doi.org/10.1002/anie.200461189
  10. Janssen, M.; Muller, C.; Vogt, D. Green Chem. 2011, 13, 2247. https://doi.org/10.1039/c1gc15264e
  11. Dijkstra, H. P.; Klink, G. P. M. V.; Koten, G. V. Acc. Chem. Res. 2002, 35, 798. https://doi.org/10.1021/ar0100778
  12. Baig, R. B. N.; Varma, R. S. Chem. Commun. 2012, 48, 6220. https://doi.org/10.1039/c2cc32566g
  13. Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217. https://doi.org/10.1021/cr010361c
  14. Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. Chem. Rev. 2002, 102, 3385. https://doi.org/10.1021/cr010341a
  15. McNamara, C. A.; Dixon, M. J.; Bradley, M. Chem. Rev. 2002, 102, 3275. https://doi.org/10.1021/cr0103571
  16. Akelah, A.; Sherrington, D. C. Chem. Rev. 1981, 81, 557. https://doi.org/10.1021/cr00046a003
  17. Kim, J.-H.; Kim, J.-W.; Shokouhimehr, M.; Lee, Y.-S. J. Org. Chem. 2005, 70, 6714. https://doi.org/10.1021/jo050721m
  18. Shokouhimehr, M.; Kim, J.-H.; Lee, Y.-S. Synlett. 2006, 4, 618.
  19. Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743. https://doi.org/10.1039/b921171c
  20. Shokouhimehr, M.; Piao, Y.; Kim, J.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 7039. https://doi.org/10.1002/anie.200702386
  21. Coperet, C.; Chabanas, M.; Saint-Arroman, R. P.; Basset, J.-M. Angew. Chem. Int. Ed. 2003, 42, 156. https://doi.org/10.1002/anie.200390072
  22. Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Chem. Rev. 2011, 111, 3036. https://doi.org/10.1021/cr100230z
  23. Zhang, D.; Zhou, C.; Sun, Z.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Nanoscale 2012, 4, 6244. https://doi.org/10.1039/c2nr31929b
  24. Nasir Baig, R. B.; Varma, R. S. Chem. Commun. 2013, 49, 752. https://doi.org/10.1039/c2cc35663e
  25. Shylesh, S.; Schünemann, V.; Thiel, W. R. Angew. Chem. Int. Ed. 2010, 49, 3428. https://doi.org/10.1002/anie.200905684
  26. Lynch, J.; Zhuang, J.; Wang, T.; LaMontagne, D.; Wu, H.; Cao, Y. C. J. Am. Chem. Soc. 2011, 133, 12664. https://doi.org/10.1021/ja2032597
  27. Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett. 1992, 2, 207.

피인용 문헌

  1. ChemInform Abstract: Heterogeneous Suzuki Cross-Coupling Reaction Catalyzed by Magnetically Recyclable Nanocatalyst. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340082
  2. Fast-Growing Field of Magnetically Recyclable Nanocatalysts vol.114, pp.14, 2014, https://doi.org/10.1021/cr500134h
  3. Robust, Efficient, and Recyclable Catalysts from the Impregnation of Preformed Dendrimers Containing Palladium Nanoparticles on a Magnetic Support vol.7, pp.2, 2014, https://doi.org/10.1002/cctc.201402775
  4. nanoparticles: a highly stable and efficient magnetically recoverable nanocatalyst for sonogashira coupling reaction vol.29, pp.12, 2015, https://doi.org/10.1002/aoc.3390
  5. Magnetically Separable and Sustainable Nanostructured Catalysts for Heterogeneous Reduction of Nitroaromatics vol.5, pp.2, 2015, https://doi.org/10.3390/catal5020534
  6. Recent Applications of Magnetically Recoverable Nanocatalysts in CC and CX Coupling Reactions vol.7, pp.12, 2015, https://doi.org/10.1002/cctc.201403057
  7. Palladium-Alumoxane Framework as a Novel and Reusable Nanocatalyst for Suzuki–Miyaura, Stille and Heck Cross Coupling Reactions vol.147, pp.1, 2017, https://doi.org/10.1007/s10562-016-1904-5
  8. The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization vol.7, pp.3, 2017, https://doi.org/10.3390/catal7030074
  9. @dopa (dopa = dopamine hydrochloride) functionalized Mn(III) Schiff base complex: A promising magnetically separable heterogeneous catalyst for oxidative transformations vol.70, pp.19, 2017, https://doi.org/10.1080/00958972.2017.1386786
  10. Magnetically Retrievable Modified Nickel Ferrite Nanoparticles: Efficient Catalytic Reduction of Nitroarenes and Photo-oxidation of Hazardous Dyes vol.6, pp.2, 2016, https://doi.org/10.1080/22297928.2016.1188724
  11. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media vol.20, pp.16, 2018, https://doi.org/10.1039/C8GC01240G
  12. Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water vol.6, pp.1, 2019, https://doi.org/10.1186/s40580-019-0176-3
  13. Magnetically recyclable core-shell nanocatalysts for efficient heterogeneous oxidation of alcohols vol.2, pp.20, 2013, https://doi.org/10.1039/c4ta00032c
  14. Catalysts of Suzuki Cross-Coupling Based on Functionalized Hyper-cross-linked Polystyrene: Influence of Precursor Nature vol.20, pp.8, 2013, https://doi.org/10.1021/acs.oprd.6b00154
  15. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water vol.4, pp.1, 2013, https://doi.org/10.1021/acsomega.8b03051
  16. Mechanochemically Synthesized Supported Magnetic Fe-Nanoparticles as Catalysts for Efficient Vanillin Production vol.9, pp.3, 2013, https://doi.org/10.3390/catal9030290
  17. Study of Catalytic Combustion of Chlorobenzene and Temperature Programmed Reactions over CrCeOx/AlFe Pillared Clay Catalysts vol.12, pp.5, 2019, https://doi.org/10.3390/ma12050728
  18. The Influence of Si/Al Ratios on Adsorption and Desorption Characterizations of Pd/Beta Served as Cold-Start Catalysts vol.12, pp.7, 2013, https://doi.org/10.3390/ma12071045
  19. Development of Titanium Dioxide-Supported Pd Catalysts for Ligand-Free Suzuki-Miyaura Coupling of Aryl Chlorides vol.9, pp.5, 2013, https://doi.org/10.3390/catal9050461
  20. C‐S cross‐coupling reaction using novel and green synthesized CuO nanoparticles assisted by Euphorbia maculata extract vol.33, pp.10, 2013, https://doi.org/10.1002/aoc.5144
  21. Palladium Nanocatalysts on Hydroxyapatite: Green Oxidation of Alcohols and Reduction of Nitroarenes in Water vol.9, pp.19, 2013, https://doi.org/10.3390/app9194183
  22. Magnetic Chitosan-Supported Silver Nanoparticles: A Heterogeneous Catalyst for the Reduction of 4-Nitrophenol vol.9, pp.10, 2013, https://doi.org/10.3390/catal9100839
  23. Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions vol.3, pp.3, 2013, https://doi.org/10.1021/acsanm.9b02017
  24. A magnetically retrievable air and moisture stable gold and palladium nanocatalyst for efficient C−C coupling reactions vol.7, pp.9, 2020, https://doi.org/10.1098/rsos.200916
  25. Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water vol.1, pp.3, 2013, https://doi.org/10.1088/2632-959x/abc2e3