DOI QR코드

DOI QR Code

Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors

  • Sung, Shi-Joon (Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Park, Mi Sun (Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Dae-Hwan (Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kang, Jin-Kyu (Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2013.01.11
  • Accepted : 2013.02.22
  • Published : 2013.05.20

Abstract

Solution-based deposition of $CuIn_xGa_{1-x}Se_2$ (CIGSe) thin films is well known non-vacuum process for the fabrication of CIGSe solar cells. However, due to the usage of organic chemicals in the preparation of CIG precursor solutions, the crystallization of the polycrystalline CIGSe and the performance of CIGSe thin film solar cells were significantly affected by the carbon residues from the organic chemicals. In this work, we have tried to eliminate the carbon residues in the CIG precursor thin films efficiently by using soft-annealing process. By adjusting soft-annealing temperature, it is possible to control the amount of carbon residues in CIG precursor thin films. The reduction of the carbon residues in CIG precursors by high temperature soft-annealing improves the grain size and morphology of polycrystalline CIGSe thin films, which are also closely related with the electrical properties of CIGSe thin film solar cells.

Keywords

References

  1. Lee, D. W.; Choi, Y. W.; Yong, K. J. J. Cryst. Growth 2010, 312, 3665. https://doi.org/10.1016/j.jcrysgro.2010.09.055
  2. Liu, Y.; Kong, D.; You, H.; Zhao, C.; Li, J.; Brugger, J. Solid State Lett. 2012, 1, 26.
  3. Park, M. G.; Ahn, S. J.; Yun, J. H.; Gwak, J. H.; Cho, A.; Ahn, S. K.; Shin, K. S.; Nam, D. H.; Cheong, H. S.; Yoon, K. Y. J. All. Comp. 2012, 513, 68. https://doi.org/10.1016/j.jallcom.2011.09.080
  4. Chang, J.; Han, J. E.; Jung, D. Y. Bull. Korean Chem. Soc. 2011, 32, 434. https://doi.org/10.5012/bkcs.2011.32.2.434
  5. Oliveira, L.; Todorov, T.; Chassaing, E.; Lincot, D.; Carda, J.; Escribano, P. Thin Solid Films 2009, 517, 2272. https://doi.org/10.1016/j.tsf.2008.10.104
  6. Lee, S. Y.; Park, B. O. Thin Solid Films 2008, 516, 3862. https://doi.org/10.1016/j.tsf.2007.07.073
  7. Park, J. W.; Choi, Y. W.; Lee, E. J.; Yoon, S. H.; Min, B. K. J. Cryst. Growth 2009, 311, 2621. https://doi.org/10.1016/j.jcrysgro.2009.02.038
  8. Tang, J.; Hinds, S.; Kelley, S. O.; Sargent, E. H. Chem. Mater. 2008, 20, 6906. https://doi.org/10.1021/cm801655w
  9. Liu, W. L.; Wu, M. Q.; Zhou, R. C.; Yan, L. D.; Zhang, S. R.; Zhang, Q. Y. Bull. Korean Chem. Soc. 2011, 32, 4332. https://doi.org/10.5012/bkcs.2011.32.12.4332
  10. Chung, J.; Kim, S. J. Bull. Korean Chem. Soc. 2010, 31, 2695. https://doi.org/10.5012/bkcs.2010.31.9.2695
  11. Mitzi, D. B.; Yuan, M.; Liu, W.; Kellock, A. J.; Chey, S. J.; Gignac, L.; Schrott, A. G. Thin Solid Films 2009, 517, 2158. https://doi.org/10.1016/j.tsf.2008.10.079
  12. Park, S. J.; Lee, E.; Jeon, H. S.; Gwak, J.; Oh, M. K.; Min, B. K. Thin Solid Films 2012, 520, 3048. https://doi.org/10.1016/j.tsf.2011.10.162
  13. Jiang, F.; Feng, J. Thin Solid Films 2006, 515, 1950. https://doi.org/10.1016/j.tsf.2006.07.154
  14. Uhl, A. R.; Romanyuk, Y. E.; Tiwari, A. N. Thin Solid Films 2011, 519, 7259. https://doi.org/10.1016/j.tsf.2011.01.136
  15. Lee, E.; Park, S. J.; Cho, J. W.; Gwak, J.; Oh, M. K.; Min, B. K. Sol. Energy Mater. Sol. Cells 2011, 95, 2928. https://doi.org/10.1016/j.solmat.2011.05.048

Cited by

  1. Hybrid Films Deposited on Plastics in Air Using Atmospheric Plasma Processing vol.24, pp.20, 2014, https://doi.org/10.1002/adfm.201303038
  2. A Comparative Study of Nanoparticle-Ink-Based CIGSSe Thin Film Solar Cells on Different Back Contact Substrates vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10684